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PREFACE 
The California Energy Commission’s Energy Research and Development Division supports 

energy research and development programs to spur innovation in energy efficiency, renewable 

energy and advanced clean generation, energy-related environmental protection, energy 

transmission and distribution and transportation.  

In 2012, the Electric Program Investment Charge (EPIC) was established by the California Public 

Utilities Commission to fund public investments in research to create and advance new energy 

solution, foster regional innovation and bring ideas from the lab to the marketplace. The 

California Energy Commission and the state’s three largest investor-owned utilities – Pacific Gas 

and Electric Company, San Diego Gas & Electric Company and Southern California Edison 

Company – were selected to administer the EPIC funds and advance novel technologies, tools, 

and strategies that provide benefits to their electric ratepayers. 

The Energy Commission is committed to ensuring public participation in its research and 

development programs that promote greater reliability, lower costs, and increase safety for the 

California electric ratepayer and include: 

 Providing societal benefits.

 Reducing greenhouse gas emission in the electricity sector at the lowest possible cost.

 Supporting California’s loading order to meet energy needs first with energy efficiency

and demand response, next with renewable energy (distributed generation and utility

scale), and finally with clean, conventional electricity supply.

 Supporting low-emission vehicles and transportation.

 Providing economic development.

 Using ratepayer funds efficiently.

Smart Charging of Electric Vehicles and Driver Engagement for Demand Management and 

Participation in Electricity Markets is the final report for the Smart Charging of Electric Vehicles 

and Driver Engagement for Demand Management and Participation in Electricity Markets 

project (contract number EPC-14-057) conducted by Lawrence Berkeley National Laboratory. 

The information from this project contributes to the Energy Research and Development 

Division’s EPIC Program. 

For more information about the Energy Research and Development Division, please visit the 

Energy Commission’s website at www.energy.ca.gov/research/ or contact the Energy 

Commission at 916-327-1551. 

file:///C:/Users/eluk/Desktop/www.energy.ca.gov/research/
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ABSTRACT 
This study collected electric demand, energy consumption, and activity data from March 2013 

to February 2018 from 50 electric vehicle charging stations owned and operated by the 

Alameda County General Services Agency. Researchers analyzed each charging session to 

determine:  (1) arrival and departure times; (2) duration of plug-in and charging; (3) total 

number of charging sessions; and (4) charging load flexibility. The analysis also covered the 

power pattern of the entire facility during this period and evaluated and quantified the effect of 

smart charging control systems on utility bills. 

Based on this analysis, the researchers developed a set of smart charging frameworks to 

manage charging demand for fleet and non-fleet electric vehicles that use Alameda County’s 

publicly available charging stations. For public electric vehicles, implementing these 

frameworks reduced the peak electricity demand during the peak time of 8 a.m. to 11 a.m. from 

24.2 kilowatts (kW) to 10.0 kW. The aggregated charging power of all the public charging 

stations decreased by 12.0 kW, which was 26.7 percent of the original uncontrolled peak 

demand. For fleet electric vehicles, the smart charging frameworks reduced peak demand 

during the on- and mid-peak periods by 10.7 kW and 13.3 kW respectively in a week during the 

summer. For direct current fast charging vehicles, the maximum power reduction was 20 kW, 

which was nearly half of the direct current fast charging power in the normal mode. The 

median value of the power reductions was 4.3 kW, which is equal to the kW shed from one 

active charging session. Researchers also quantified the potential for the aggregated fleet of 

electric vehicles to participate in multiple demand response products in the California retail 

and wholesale electricity markets. 

Keywords:  electric vehicles, charging stations, charging behaviors, smart charging control, cost 

savings, load flexibility, load scheduling. 

Please use the following citation for this report: 

Black, Douglas, Yin Rongxin, and Bin Wang. 2019. Smart Charging of Electric Vehicles and Driver 

Engagement for Demand Management and Participation in Electricity Markets. California 

Energy Commission. Publication Number:  CEC-500-2019-036. 
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EXECUTIVE SUMMARY  
In January 2018, Governor Edmund G. Brown signed an executive order calling for 5 million 

zero emission vehicles on California’s roads by 2030, along with 250,000 electric vehicle 

charging stations by 2025. The order represented a substantial increase from California’s prior 

goal of 1.5 million zero-emission vehicles by 2025. The executive order states, “California is 

taking action to dramatically reduce carbon emissions from transportation – a sector that 

accounts for 50 percent of the state’s greenhouse gas emissions and 80 percent of smog-

forming pollutants.” 

Electric vehicles are key to helping California reach its ambitious climate change and air quality 

goals. Hybrid and electric vehicles continue to grow in popularity, with the Alliance of 

Automobile Manufacturers reporting that hybrid and electric vehicles represented 7.8 percent 

of California market share in 2018 compared to 3.6 percent in 2016. Fleet operators are also 

increasingly exploring electric vehicles as a way to reduce their environmental footprint while 

also keeping costs down.  

Municipal and corporate fleets have the opportunity to use electric vehicles to reduce fuel costs 

and decrease greenhouse gas emissions. To minimize the costs of the electricity to charge their 

vehicles, fleet owners and public parking facility owners need to be able to manage charging 

based on electric vehicle usage to avoid electricity demand charges, leverage time-of-use electric 

rates, and participate in demand response programs and electricity markets.  

The term “smart charging” refers to the intelligent charging of electric vehicles, where charging 

can be controlled and shifted based on grid loads according to the vehicle owner’s needs. This 

helps to reduce electricity demand on the grid and thus lowers associated energy costs and 

utility bills for customers.  

This project demonstrated that fleets and public parking facility owners can achieve cost 

savings in the near term and beyond with current electric vehicle and charging station 

technologies. In addition, simulation using real-world charging activity data collected in this 

study was used to demonstrate the potential for generating revenue through smart charging 

and participation in demand response and electric service markets. 

Project Purpose  

This project developed and demonstrated a charging control system, consisting of software and 

hardware, that was applied to over 40 Alameda County fleet electric vehicles and charging 

stations to monitor and control the scheduling and magnitude of charging power for each 

charging station port and electric vehicle pair. The system was used for County fleet vehicles 

and for several private electric vehicles whose owners volunteered to participate in the 

research.  The researchers developed approaches to engage non-fleet electric vehicle owners 

who charge their vehicles at Alameda County’s publicly available charging stations and manage 

their charging station loads to further reduce utility costs. These approaches can also be 

applied to commercial and workplace charging and provide large benefits in managing peak 

electricity demand across California by helping consumers reduce or shift their electricity use 

during times when electricity demand is high. Although the project focused on one-way (uni-
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directional) charging, the approach is compatible with future vehicles and chargers that may 

have two-way (bi-directional) charging capability.  

During this study, there were 14 Level 1 and 36 Level 2 charging ports for public and fleet 

electric vehicles at the Alameda County parking garage, named AlCoPark. Level 1 charging 

stations use a normal 120-volt connection, which uses a standard household outlet, and 

charging times can be slow. Level 2 charging stations use a 240-volt power source, such as the 

one used for ovens or clothes dryers, and have much faster charging times than Level 1 

chargers. In August 2017, a Level 3 direct current fast charging station, which can charge 

vehicles even more quickly, was installed on the street level for both public and fleet vehicles.  

Since the installation of charging stations in March 2013, the number of charging sessions 

increased steadily to a rate of 200-250 per month by the end of 2014. During 2016, the number 

of charging sessions was around 400 per month. By 2017, the number of the charging sessions 

ranged from 600 to 900 each month and a few new charging stations had been installed.  

The monthly peak electric demand of the entire facility increased to more than 140 kW 

compared to 80-90 kW before installation of the charging stations. Utility bills increased by 

$500-$600 in winter and $700-$1,000 in summer. 

Project Process  

The research had three main technical tasks: 

 Task 1:  Site and fleet characterization, data collection, and data analysis for control 

strategies. 

 Task 2:  Implement and demonstrate fleet and public electric vehicles’ managed 

charging control system. 

 Task 3:  Quantify the potential of fleet and non-fleet electric vehicles in the managed 

charging control system as demand response capabilities in the retail and wholesale 

electricity markets. 

During this demonstration project, the project partners worked together to achieve the goal of 

minimizing electricity costs related to electric vehicle charging. Alameda County provided 

significant support related to its fleet and public electric vehicle charging stations across the 

Bay Area, as well as information on customer need and feedback. The county tracked the 

operation of electric vehicle charging and the energy and demand patterns daily, especially 

after implementation of a set of smart charging control strategies. Prospect Silicon Valley 

recruited public electric vehicle drivers for the pilot study of charging control, prepared and 

circulated materials to drivers who frequently used the chargers at the garage, and worked with 

ChargePoint to help enroll participants into the study. Kisensum developed a dashboard for 

managing the fleet charging stations and the direct current fast charging station, and 

implemented the smart charging power control sequences from the Lawrence Berkeley National 

Laboratory server to the charging stations. ChargePoint provided significant technical support 

on the communication and control of charging stations, and created a dedicated group for the 
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communication and control for the participants in the public charging pilot study with the 

research team. 

At the beginning of the project, collection of charging session and meter data was initiated to 

enable analysis of charging behaviors at the AlCoPark Garage and in other facilities for 

multilocation smart charging control. The team calculated and analyzed metrics such as the 

monthly electricity demand before and after the use of the charging equipment, charging 

behaviors at the vehicle and charging station levels, and fleet electric vehicle trips and charging 

characterizations.  

Using what was learned from the datasets, the team developed a set of smart charging control 

strategies for public electric vehicles, fleet electric vehicles, and the direct current fast charger. 

The researchers developed separate smart charging control platforms to meet the different 

requirements of each application. For public electric vehicles, researchers conducted several 

extensive end-to-end field tests to ensure that smart charging control did not affect drivers’ 

mobility needs. The project demonstrated and evaluated smart charging control systems for 

Alameda County fleet electric vehicles from February 2017 to March 2018, and for public users 

at the AlCoPark Garage from August 2017 to November 2017. Offset of direct current fast 

charger load with demand management of fleet electric vehicle support equipment was 

demonstrated from September 2017 to March 2018. The County of Alameda has indicated that 

it intends to continue using the fleet and direct current fast charger smart charging systems 

after the completion of this project in March 2018 under a contract with Kisensum. 

To address fleet EV charging, the project team developed an interface for monitoring and 

controlling the charging power of the charging stations for the fleet EVs at the AlCoPark garage. 

The charging status of all the charging stations for the fleet vehicles is displayed, and each 

station port is highlighted with a color indicating its status. In addition, a user can pause 

charging or override the scheduled charging of any station port. Fleet operators can make 

several selections to schedule, postpone, or stop a charging session. 

The public station charging control system required engagement of the EV drivers. The project 

team configured a physical server located at Lawrence Berkeley National Lab with several 

software programs written or applied in this project that included:  (1) interface with a web-

based text messaging service to communicate directly with public station users; (2) web-page 

forms for receiving anticipated session end times and charging energy needs from public 

station users; (3) a database to store anonymized charging station data; and (4) a smart 

charging optimization code for creating cost-minimizing charging schedules that met drivers’ 

needs. As with the fleet charging control, software created in this project that was located on 

the Kisensum server communicated to the public charging stations via the ChargePoint API, the 

charging station, the charging station vendor, and the charging power controller and optimizer. 

To reduce electric utility demand charges related to direct current fast charging sessions, a 

control strategy reducing the charging power of concurrent fleet Level 2 charging sessions was 

implemented. 
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Project Results, Challenges, and Lessons Learned 

The more noteworthy project results include: 

 Developed the smart charging control system platforms for public and fleet electric 

vehicles and the direct current fast charger. 

 Recruited frequent public charging users at the AlCoPark parking garage to participate 

in the pilot study and demonstrated public electric vehicle managed charging to achieve 

utility bill savings by managing peak demand. 

 Quantified the potential of the fleet electric vehicle managed charging control system 

for multiple demand response products in the California retail and wholesale electricity 

markets. 

In 2017, smart charging control strategies for fleet and direct current fast chargers were 

implemented in February and August independently. The primary period for public smart 

charging was from August to October. The total cost savings in 2017 were $2,651 which 

included $1,697 for fleet vehicles, $169 for public vehicles, and $785 for direct current fast 

chargers. 

Over the period of smart charging demonstration in 2017, the AlCoPark Garage electric utility 

costs did not increase as much as would be expected given the increasing number of charging 

sessions. This was a result of the implementation of the smart charging control system and the 

newly installed direct current fast charging station in August of that year. 

Fleet Electric Vehicles 

In 2017, nearly 1,000 charging sessions were controlled to minimize the peak demand of fleet 

electric vehicles, representing about 25 percent of total fleet charging sessions. The average 

cost saving was about $1.80 per session. In one week during the summer, the peak demand 

during the on- and mid-peak periods was reduced by 10.7 kW and 13.3 kW, respectively. 

The charging behavior indicated that most fleet electric vehicles return to be charged during 

on-peak hours, leading to very high demand charges (charges based on a commercial or 

industrial customer’s peak electricity use that are paid on top of the actual cost of the 

electricity). With controlling only 25 percent of the fleet charging session, the smart charging 

control reduced 44.3 percent of the original on-peak demand without any effect on the use of 

fleet vehicles the following day.  

Challenges included having more fleet plug-in vehicles than chargers, which limited the cost 

saving potential from the smart charging control. In addition, fleet staff could not rotate 

vehicles to available chargers outside of garage operating hours (7 a.m. to 7 p.m.). Simple 

scheduling works well for fleet charging, but may vary depending on patterns of fleet vehicle 

activity. Given the current limitations, a better coordinated fleet charging system would 

improve the performance (that is, lower utility costs) by linking fleet vehicle trip management 

with the smart charging control. Moreover, the fleet electric vehicle dashboard (a web-based 

user interface displaying AlCoPark charging station status and enabling control) could be fully 

used to improve the fleet charging control. 



5 

Public Electric Vehicles 

For the pilot study participants, use of the charging controls reduced the daily peak demand by 

7.0 kW. During the original peak period from 8 a.m. to 11 a.m., peak demand was reduced from 

24.2 kW to 10.0 kW. The total charging power of all the public charging stations decreased by 

12.0 kW, about 26.7 percent of the original uncontrolled peak electric vehicle charging demand. 

For the public charging control system, only about five percent of all public charging sessions 

were controlled during the pilot study period. Public drivers need educational opportunities, 

such as flyers and workshops, to make them aware of the effect of smart charging control on 

utility costs and the environment. In addition, customers’ request for charging must be 

guaranteed by the end of the charging session without any compromise of the charging request.  

Difficulties were encountered in recruiting and maintaining volunteers for study participation. 

Future studies of a similar nature would benefit from more knowledge and information on 

incentivizing human behavior with respect to public participation recruitment and retention. 

Direct Current Fast Charger 

For Direct Current Fast Charger sessions, the maximum power reduction was 20 kW, which was 

nearly half of its charging power in the normal mode. The median value of the power reduction 

was 4.3 kW. 

Due to their relatively high power, about 50 kW compared to about 7 kW for Level 2 charging, 

Direct Current Fast Charger can contribute to substantial electric utility energy and demand 

charges, especially during on-peak periods of time-of-use rates. The approach developed and 

demonstrated in this study, reduced the charging power on selected fleet charging stations 

during Direct Current Fast Charger sessions. Such a short period of limiting charging power 

would not have much effect on the charging sessions of fleet vehicles, because fleet vehicles are 

usually charged in the garage over long periods and often overnight. The performance of this 

control strategy for managing the power demand from a Direct Current Fast Charger session in 

a short period varies along with the number of active fleet charging sessions. Each active 

charging session can contribute about 4.5 kW of power reduction to offset the DCFC demand.  

Electric Market Participation 

Flexibility in scheduling the charging of individual fleet EVs leads to greater revenue in all 

demand response and electric grid market participation. For example, monthly regulation 

revenue was approximately doubled when the fleet EV charging baseline was controlled rather 

than uncontrolled. One of the most critical aspects of smart charging control is the ratio of the 

time an EV is connected to a charging station port and the time the EV is actively charging. The 

simulations performed in this study show that the ratio does not have to exceed roughly 2-3 to 

maximize revenue from regulation ancillary services market participation. This is a good 

finding for EV fleet owners or aggregators since it means that, with regards to maximizing 

regulation revenue, participating EVs do not have to be left connected to charging stations for 

very long periods after charging is complete, which will allow a greater utilization of charging 

equipment. Wholesale demand response and ancillary services markets have minimum levels of 

participation. This study shows that, for the EV fleet simulated, any threshold below 40 kW 
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corresponds to maximum market participation revenues. Either threshold requirements have to 

be kept low or larger aggregations of fleet EVs will be needed for profitable market 

participation with higher thresholds. 

Technology Transfer 

This project successfully demonstrated a set of smart charging strategies at an Alameda 

County public parking garage, that also houses the county’s primary fleet vehicle facility, to 

manage charging station loads and reduce utility costs. Alameda County was so pleased with 

the outcomes of the project that they paid a two-year contract to continue operation of the fleet 

management smart charging system at the AlcoPark Garage. Another significant success of this 

project comes in the form of technology transfer where a major charging service provider, 

ChargePoint, purchased project partner Kisensum in order to incorporate the technology 

developed in this project into their commercial product offerings because of the value that it 

brings to their fleet and commercial customers. 

Benefits to California  

The new smart charging optimization algorithms and charging control systems that were 

developed and demonstrated in this project, along with the acquired knowledge of charging 

behaviors, will help increase the use of commercial charging stations in California which will, in 

turn, provide cost savings for customers and load aggregators, and reduce greenhouse gas 

emissions. As a result of this project, LBNL was able to further build out a tool to help fleet 

owners incorporate PEVs into their fleets. LBNL is working with Alameda, Oakland, and Caltrans 

to help facilitate PEV smart charging technologies into their large-scale fleet procurement 

processes. 
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CHAPTER 1: 
Introduction 

Increased numbers of electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) in 

California’s new vehicle market has the potential to substantially reduce air pollution, carbon 

emissions, and the consumption of carbon fuels. To combat climate change, the California has 

implemented state and private sector actions to accelerate electric vehicle adoption.  

California has a goal of 5 million zero emission vehicles (ZEVs) on the roads by 2030 and 

250,000 EV charging stations by 2025. As of November 2018, more than 500,000 EVs have been 

sold in California, according to tracking by Veloz, a public-private coalition of major EV 

industry stakeholders. According to the California Public Utility Commission, more than 18,000 

light-duty EV charging plugs are available throughout the state. Local governments, together 

with vehicle manufacturers, electric utilities, electric vehicle charging companies, and states, 

have launched electric vehicle fleet projects to showcase electric vehicles in multiple 

government fleets (USDOE, n.d.).  

The Smart Charging of Electric Vehicles and Driver Engagement for Demand Management and 

Participation in Electricity Markets project creates substantial direct emission reductions, and 

serves as a model to scale this clean energy solution nationwide. Funded through the Federal 

Highway Administration’s Congestion Mitigation and Air Quality Improvement Program, the 

Local Government Electric Vehicle Demonstration Project is an initiative to test the utility and 

benefits of using electric vehicles in municipal fleet operations.1  The project in the San 

Francisco Bay Area is supported by the Metropolitan Transportation Commission and is a 

partnership between Alameda County, Sonoma County, Sonoma Water District, Transportation 

Authority of Marin, City of San Francisco, City of San Jose, City of Fremont, City of Concord, 

City of Oakland, City of Santa Rosa, and the Bay Area Climate Collaborative. About 90 all-

electric vehicles and 90 charging points are installed throughout the Bay Area.  

Commercial, e.g. fleet, public, workplace, EV charging is provided by Level 2 or DCFC equipment 

at power levels of approximately 7 kW and 50 kW, respectively.  With EVs likely making up the 

vast majority of the five million ZEVs targeted to be operating in California by 2030, the 

aggregate charging demand will put considerable strain on the electric grid.  The 

implementation of smart charging controls can mitigate this strain by enabling aggregations of 

EV charging stations to participate in wholesale or retail demand response programs or 

wholesale ancillary services markets.  Demand response programs typically work by sending a 

signal for participants to lower demand during particular periods and smart charging can 

receive these signals and decrease EV charging demand for those EVs that are able to 

participate without compromising their ability to provide transit. Ancillary services provided by 

batteries typically balance differences between electric supply and demand on very short time 

                                                 
1 For more information, see http://www.acgov.org/sustain/next/evp.htm.  

http://www.acgov.org/sustain/next/evp.htm
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scales by consuming (charging) or providing (discharging) power.  Smart charging of 

aggregations of uni-directional charge only EVs can schedule and control the amount of 

ancillary service they can provide by charging at a level lower than the charging station’s peak 

power and increasing or decreasing charging power. For commercial ratepayers that are most 

likely on time of use rates where electric consumption and peak demand costs vary depending 

on time of day, EV charging increases costs primarily because of the increased peak demand 

that it creates. Smart charging controls lower ratepayer costs by minimizing peak demand by 

spreading demand over longer periods or shifting demand to lower cost periods. 

The project developed and demonstrated a scalable managed charging control approach that 

reduced operating costs related to EV charging. Lower operating costs were obtained by 

controlling EV charging for demand charge mitigation and by taking advantage of time-of-use 

rates. Simulation and data analysis using actual public and fleet EV charging data demonstrated 

potential revenues from managing charging to provide grid services. The project demonstrated 

managed charging on both fleet and privately owned EVs. Alameda County provided nearly 50 

fleet EVs for this project, with drivers of privately owned vehicles that charge at Alameda 

County charging stations also engaged in the project. By developing scalable managed charging 

solutions for fleet operators and personal vehicle owners, this project developed and 

demonstrated a managed charging control approach that can be used for commercial, 

workplace, and home charging throughout California to provide benefits in managing peak 

demands and offering valuable grid services. 

Recent studies on the adaptation needs of the existing operational control mechanisms to 

achieve smart charging often propose novel planning and control approaches. These 

approaches can be categorized into direct and indirect control approaches (Galus, Vayá, Krause, 

& Andersson, 2013). In direct control approaches, the control actions are attained without the 

vehicle owner in the control loop. Often, load aggregations are created to increase the size of 

the resource so it can offer economic benefits to the aggregator (Guille & Gross, 2009). In 

(Sanchez-Martin, Sanchez, & Morales-Espana, 2012), for example, the authors proposed a direct 

load control strategy to provide grid services for three different predefined mobility patterns. 

In (Su & Chow, 2012), the authors conducted a simulation study for 3,000 EVs parked at a 

municipal parking lot and evaluated the real-time performance of a direct control approach, 

which maximizes the expected state of charge of the EV aggregation in the next time step 

subject to mobility constraints. In (He, Venkatesh, & Guan, 2012), the authors develop an 

optimal direct control scheme based on global charging costs. The authors compare the 

proposed direct control scheme to the local scheduler in a simulation environment including 

100–400 EVs. The arrival times of the EVs, the charging periods, and the initial energies of EVs 

are assumed to have a uniform distribution, which is unrealistic in practical implementations.  

In indirect control approaches, the electric vehicle owner manages the control authority 

through a decentralized strategy. These strategies often make use of a broadcasted exogenous 

price signal. The cost of energy is minimized at each electric vehicle charging station 

considering the local mobility and charging constraints. An iterative cost minimal charging 

framework based on game theory is presented in (Ma, Callaway, & Hiskens, 2013) and a similar 
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strategy is given in (Gan, Topcu, & Low, 2013). Additionally, EV charging problem is modeled as 

convex optimization problem, with proof of the existence of optimal solution. However, these 

approaches do not include the impacts or additional costs that can be induced on the 

distribution network due to increased demand during low cost periods and often assume that 

the supply and non-EV demand is known. 

Many researchers have investigated the benefits of EV charging and different grid-level services 

that can be provided by an aggregation of EV population using different control approaches. 

Note that various services can be provided by EVs and many studies have quantified the 

benefits of smart charging from various stakeholder perspectives (Rotering & Ilic, 2011). In 

(Rotering & Ilic, 2011), the authors estimate that smart charging will reduce the daily electricity 

costs of a plug-in hybrid EV by $0.23. They also identify daily profits for the individual driver 

when the charging of the vehicles can be regulated. The economic benefits of fleets that 

participate in specific markets have also been extensively studied. In (Finn, Fitzpatrick, & 

Connolly, 2012), the authors use historical market data and charging data collected from a EV 

located in a residential household to investigate financial savings and peak demand reduction. 

The authors conclude that the peak EV demand can be reduced by up to 56 percent. 

A previous study by Lawrence Berkeley National Laboratory (LBNL) analyzed the EV charging 

load of commercial charging stations located in Pacific Gas and Electric’s service territory and 

evaluated various smart charging control approaches assuming perfect knowledge of charging 

session start times, end times, and energy delivered (Kara et al., 2015).  The project presented 

in this report built upon the algorithms developed in the earlier study and modified them to 

minimize fleet and public EV charging costs with session activity that could actually be 

acquired.   

In this project, LBNL proposed a set of smart charging control strategies and developed each 

smart charging control system for fleet EVs, public EVs, and direct current fast charging by 

analyzing the charging behavior and power pattern of each group of EVs. Especially for public 

EVs, LBNL modified the charging control algorithm based on the actual charging requirements 

and conducted many field tests before the implementation. In addition, LBNL quantified the 

potential of the aggregated fleet EVs to participate in multiple demand response products in 

the California retail and wholesale electricity markets.  
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CHAPTER 2: 
Demonstration Site Overview 

Alameda County is a partner in the Local Government Electric Vehicle Fleet Project, an initiative 

to showcase electric vehicles in multiple government fleets. By April 2013, the county had 

purchased and installed 40 EV charging stations, including 22 charging stations in Alameda 

County’s parking garage, the AlCoPark Garage. In 2017, the county installed three new EV 

charging stations and one direct current fast charging (DCFC) station in the garage.  

At the AlCoPark Garage, there were three types of EV charging station applications:  (1) public 

charging stations for privately owned and fleet vehicles; (2) charging stations for only fleet 

vehicles, located in a restricted access area; and (3) a DCFC station for privately owned and fleet 

vehicles. There were 14 Level 1 stations (up to 1.6 kilowatt [kW] charging rate), 36 Level 2 

stations (up to 6.6 kW charging rate), and one DCFC station (up to 50 kW charging rate) at the 

AlCoPark Garage during 2017, the primary demonstration period of this study (Figure 1).  

Figure 1:  AlCoPark Garage Electric Vehicle Charging Stations 

 

Source:  Lawrence Berkeley National Laboratory and ChargePoint 

 

Public access to the public charging stations was only available during garage operating hours, 

7:00 a.m. to 7:00 p.m., seven days a week. However, fleet operators could charge fleet EVs on 

those stations at any time. Fleet operations had typical business hours of 7:00 a.m. to 7:00 p.m. 
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and could leave EVs to charge overnight on either public or fleet stations. The DCFC station 

went into operation in August 2017 and was accessible 24-hours seven days per week. 

Table 1 lists the location and number of each type of EV charging station at AlCoPark Garage.  

Table 1:  Installed Charging Stations in the AlCoPark Garage 

Location Charging Stations Number Ports 

Basement 
CT2100 4 Each with a L1 and L2 port 

CT4020 8 Each with two L2 ports 

2nd Floor 
CT2100 5 Each with a L1 and L2 port 

CT4020 3 Each with two L2 ports 

8th Floor CT2100 5 Each with a L1 and L2 port 

Street Level CPE200 DCFC 1 1 SAE Combo and 1 CHAdeMO   

Source:  Lawrence Berkeley National Laboratory 

The Alameda County vehicle fleet facility is located in the basement of the AlCoPark Garage. In 

2017, the fleet consisted of 33 EVs and 7 plug-in-hybrid electric vehicles (PHEVs) (Figure 2). 

Figure 2:  Alameda County Fleet Electric Vehicles and Plug-in Hybrid Electric Vehicles    
Dispatched from AlCoPark Garage 

 

Source:  Lawrence Berkeley National Laboratory, Nissan, General Motors, Ford, and Toyota 

Alameda County was motivated to implement smart charging due to the increased cost of 

electricity observed after implementing EVs and EV charging at the AlCoPark Garage facility. 

Figure 3 shows the daily and monthly average electricity demand (red line) at the facility in 

February 2013 before EV and EV charging was implemented. 
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Figure 3:  Daily Demand Profiles for AlCoPark Garage in February 2013                                      
before Electric Vehicle Charging  

 

Red line is monthly average. 

Source:  Lawrence Berkeley National Laboratory 

After EV charging was implemented at the AlCoPark Garage for both public and fleet EVs, but 

before installation of the DCFC station, peak monthly electricity demand increased 

substantially from ~65 kW to ~115 kW (see Figure 4).  

Figure 4:  Daily Demand Profiles for AlCoPark Garage in February 2015                                         
after Electric Vehicle Charging  

 

Red line is monthly average) 

Source:  Lawrence Berkeley National Laboratory 
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This corresponds to an increase of roughly $700 per winter month (November-April) and 

$1,500 per summer month (May-October) in electric utility demand charges alone. The primary 

objective of developing automated smart charging control systems in this research project was 

to reduce the demand peaks caused by EV charging. 

Electric Vehicle Charging Behaviors and Facility Power Usage 
EV charging behaviors at the AlCoPark Garage charging stations are characterized using the 

following metrics:  (1) arrival and departure times; (2) plug-in and charging durations; (3) 

number of charging sessions; and (4) charging load flexibility.  

Charging Behaviors 

Since installation of charging stations in March 2013, the number of charging sessions had 

increased to a fairly steady rate of 200-250 per month by the end of 2014 (Figure 5). In 2017, 

the number of the total charging sessions ranged from 600 to 900 each month despite there 

being only a few new charging stations installed, indicating more EVs were charging at the site. 

Figure 5:  Monthly Totals of Charging Sessions, March 2013-February 2018 

 

Source:  Lawrence Berkeley National Laboratory 

Alameda County fleet EV managers primarily use the designated basement (known as 

“AlcoBase”) charging stations to charge the fleet EVs. They also move and shift fleet EVs around 

all charging stations to fully charge EVs for the next day’s use. Figure 6 shows the distribution 

of arrival and departure times for sessions at the public charging stations and the designated 

AlcoBase charging stations separately, with a likely normal distribution of charging behavior at 

the public charging stations for privately owned vehicles. About half of privately owned 

vehicles arrive at the charging stations before 10 a.m.  

Given the charging time limit at Level 1 and 2 stations, some vehicles unplug during the noon 

hour while others leave the garage in late afternoon. As illustrated in Figure 6, fleet vehicles 

typically leave the garage in the early morning. The arrival times suggest that charging of fleet 
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vehicles starts anywhere from early morning to late afternoon, which coincides with the typical 

working hours of a non-residential location (that is, a commercial parking garage). 

Figure 6:  Distribution of Arrival Time and Departure Time of Charging Sessions at (a) Public 
Charging Stations and (b) Fleet Charging Stations 

(a) Sessions at the Public Charging Stations 

 

(b) Sessions at Fleet Charging Stations from March/2013 to February/2018 

 

Source:  Lawrence Berkeley National Laboratory 

Facility Power Usage 

The researchers observed that the number of EV charging sessions increased substantially from 

about 400 per month to more than 600 per month since February 2017 (Figure 7). While that 

increase suggests the facility’s peak power demand would increase as well, implementation of 

the smart control strategy to manage the fleet charging stations in fact reduced demand by 

about 10 kW despite the number of EV charging sessions rising to nearly 800 in March 2017.  

In addition, the facility installed a new DCFC charging station by the end of August 2017, which 

explains a sudden rise of monthly peak demand by 26 kW in September 2017. Again, the 

number of EV charging sessions increased to nearly 900 in October 2017, and the monthly peak 

demand decreased significantly by 18 kW. LBNL implemented the smart charging control 
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strategy for a few privately owned vehicles and the DCFC charging station separately from late 

August 2017.  

Figure 7:  Monthly Peak Power Demand of AlCoPark Garage from October 2014-December 2017 

 

Source:  Lawrence Berkeley National Laboratory 

Electric Vehicle Charging Energy Use and Utility Bills 
The increase in the number of charging sessions leads to the increase of the charging energy 

associated with the facility’s electric utility bills. Figure 8 shows the normalized monthly EV 

charging energy usage and the normalized monthly facility utility bill in 2016 and 2017. Notice 

that the monthly EV charging energy use increased considerably by the end of 2017, more than 

2.5 times the energy use in 2016. However, the monthly facility utility bills did not increase as 

much as the EV charging energy usage because (1) the cost of EV charging only represented 

about 10 percent of the facility’s monthly utility bill; and (2) a set of smart charging control 

strategies were implemented for reducing the peak demand and energy charges since February 

2017. 
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Figure 8:  Electric Vehicle Charging Energy Use and Utility Bills in 2016 and 2017 

 

Source:  Lawrence Berkeley National Laboratory 
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CHAPTER 3: 
Smart Charging Methods 

The AlCoPark garage is in Pacific Gas and Electric Company’s (PG&E) E-19 time-of-use (TOU) 

service rate (PG&E, 2010) shown in Table 2. This rate plan is suitable for customers who can be 

flexible with their power use between the maximum peak, maximum part-peak, and off-peak 

periods. The utility averages electric demand over 15-minute periods to determine peak values 

in each monthly billing period type. Typically, the cost associated with the demand charge 

accounts for about half of the total electric cost for non-residential facilities. Shifting demand 

for charging from one period to another can provide cost savings. For example, a customer 

could save $114 by shifting the demand of a single 6.6 kW Level 2 charging session from the 

billed maximum demand period to an off-peak period in a summer month (May 1 to October 

31; winter is November 1 to April 30). 

Table 2:  Pacific Gas and Electric Company E-19 Rate Schedule 

Demand Charges $/kW Time Period 

Maximum Peak Demand 

Summer 
$18.74 12:00 p.m.-6:00 p.m. 

Maximum Part-Peak 

Demand Summer 
$5.23 

8:30 a.m.-12:00 p.m. and 6:00 

p.m.-9:30 p.m. 

Maximum Demand Summer $17.33 Any time 

Maximum Part-Peak 

Demand Winter 
$0.13 8:30 a.m.-9:30 p.m. 

Maximum Demand Winter $17.33 Any time 

   

Energy Charges $/kW Time Period 

Peak Summer $0.14726 12:00 p.m.-6:00 p.m. 

Part-Peak Summer $0.10714 
8:30 a.m.-12:00 p.m. and 6:00 

p.m.-9:30 p.m. 

Off-Peak Summer $0.08057 Any time 

Part-Peak Winter $0.10166 8:30 a.m.-9:30 p.m. 

Off-Peak Winter $0.08717 Any time 

Source:  Pacific Gas and Electric Company, 2016 
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The AlcoPark Garage is on the peak day pricing rate, which provides customers the opportunity 

to manage their electric costs by reducing load during high-cost periods or shifting load from 

high-cost periods to lower-cost periods. There are 9-15 peak day pricing event days per year. On 

event days, the utility adds a surcharge between 2:00 pm and 6:00 pm, which is $1.20/kWh for 

E-19 tariff rate. 

Smart Charging Strategies and Approaches 
The researchers configured smart charging control systems for EVs charging at fleet, public, 

and DCFC stations. Figure 9 shows a schematic of the system architecture for fleet charging. A 

cloud-based server configured and managed by project team member Kisensum ran software 

created for this project that communicated with the fleet charging stations, including the DCFC 

station, via the ChargePoint application program interface (API). Kisensum also created a web-

based dashboard (Figure 10) that fleet staff could access through any web browser to monitor 

and manage fleet EV charging. The dashboard interface sent fleet charging schedules and 

charging set points to the fleet charging stations.  

Figure 9:  System Architecture for Smart Charging Control of Fleet Charging Stations 

 

Source:  Lawrence Berkeley National Laboratory 

Fleet Smart Charging Strategy and Approach 

Over the course of this project, approximately 40 fleet EVs were dispatched during weekdays 

from the AlCoPark Garage coordinated by the Alameda County fleet management staff. With 

few exceptions, all fleet EVs were parked in the garage each night of the study. The overnight 

parking provided sufficient time for each fleet EV to charge fully using a Level 2 charger. This 

charging behavior provided flexibility to manage the charging start time and power level to 
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shift charging from on- and mid-peak periods (12 p.m. to 6 p.m. and 6 p.m. to 9:30 p.m., 

respectively) to the off-peak period (9:30 p.m. to 8:30 a.m.). Fleet EVs typically left the garage in 

the morning and returned to the garage in the afternoon. Fleet management staff would often 

immediately plug a returning EV into a fleet charging station. With fewer charging station ports 

than EVs, fleet staff would rotate EVs to ports as they became available.  

The aggregated energy demand to charge the returned fleet EVs often resulted in high demand 

charges during the on-peak period. To minimize the charging power demand during peak 

hours, a set of charging control strategies for fleet vehicles was implemented that scheduled 

the availability of fleet charging stations. Charging stations for fleet EVs were grouped into 

staged schedules with start times of 9:30 p.m., 11:30 p.m., 1:30 a.m., and 3:30 a.m. As a result, 

the charging power demand of fleet vehicles was allocated to off-peak hours in different stages. 

Meanwhile, the aggregate charging power can be reduced significantly. 

Kisensum developed an interface for monitoring and controlling the charging power of the 

charging stations for the fleet EVs at the AlCoPark garage (Figure 10). The charging status of all 

the charging stations for the fleet vehicles is displayed, and each station port is highlighted 

with a color indicating its status (for example, red indicates active charging). In addition, a user 

can pause charging or override the scheduled charging of any station port. The last column 

labeled “Action” with the control option “Defer Now” allows users to postpone a charging 

session. The option “Sched” refers to the charging control using the user-defined demand 

reduction schedule. During the scheduled period, the charging port power setting is scheduled 

to the Level 1 charging level, which is about 1.5 kW. Other than that, the charging power will be 

reset to normal, which is about 6.6 kW. 

Figure 10:  Smart Charging Control System Dashboard for Fleet Electric Vehicles and              
Direct Current Fast Charger 

 

Source:  Lawrence Berkeley National Laboratory 
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When clicking the “Detail” option, a new popup page (Figure 11) allows the user to set a new 

demand reduction schedule or update an existing schedule. Again, during the demand 

reduction schedule, the vehicle will not charge unless overridden. 

Figure 11:  Smart Charging Control System Dashboard for Fleet Electric Vehicles and              
Direct Current Fast Charger  

 

Source:  Lawrence Berkeley National Laboratory 

Public Smart Charging Strategy and Approach 

For privately owned vehicles, the goal of the proposed smart charging framework was to 

reschedule the power time series measured in discrete time segments or any charging session 

on the same day. LBNL’s previous work describes the framework with the following key 

structures/assumptions:  (1) The order of the measured power in time series is preserved 

(because the power that electric vehicle support equipment draws depends on the state of 

charge of the EV being charged); and (2) the charging is preemptive, which means the 

rescheduled charging load is equal to the original load and the charging tasks are interruptible 

without any decrease in the state of charge of the EV. 

The public station charging control system required engagement of the EV drivers as shown in 

the system architecture schematic in Figure 12. The project team configured a physical server 

located at LBNL with several software programs written or applied in this project that included 

(1) interface with a web-based text messaging service, Nexmo, to communicate directly with 

public station users; (2) web-page forms for receiving anticipated session end times and 

charging energy needs from public station users; (3) a database to store anonymized charging 

station data; and (4) a smart charging optimization code for creating cost-minimizing charging 

schedules that met drivers’ needs. As with the fleet charging control, software created in this 

project that was located on the Kisensum server communicated to the public charging stations 

via the ChargePoint API, the charging station, the charging station vendor, and the charging 

power controller and optimizer. 
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Figure 12:  System Architecture for Smart Charging Control of Public Charging Stations 

 

Source:  Lawrence Berkeley National Laboratory 

The charging of privately owned EVs is different from that of fleet EVs. Most fleet vehicles can 

fully recharge overnight and be ready for use the next day. However, privately owned EVs 

usually park in the garage for a short period, and drivers need to charge their vehicles enough 

to avoid compromising their next trip. This can cause “range anxiety” for drivers of charging-

controlled EVs due to unexpected less power. In this study, the participation in the pilot study 

for controlling the charging during public charging sessions was voluntary, while LBNL 

provided incentives to those who charged at the AlCoPark garage more than once a week. 

Considering these factors, LBNL requested the drivers to provide (1) their estimated departure 

time; and (2) the estimated energy (kWh) or distance (miles) required. LBNL fed participants’ 

charging request data into the charging control optimization algorithm and generated the 

optimal charging plan for each current active charging session. In general, the algorithm 

reduced the stacked charging power of concurrent charging sessions by staging the charging 

power sequence in different time slots. When the charging was finished or the charger was 

plugged out, the optimal charging plan was terminated immediately. At the current timestamp, 

the controlled charging station was reset back to normal. 
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The top priority of a smart charging control system is that the requested amount of charging 

power is guaranteed by the end of the charging session without any compromise of the 

charging request unless the vehicle gets fully charged or the driver unplugs the vehicle earlier 

than the submitted departure time. 

As shown in Figure 12, the smart charging control system for public EVs includes the following 

main components:  (1) an optimizer for computing the optimal charging power sequence; (2) a 

database for storing all the charging session data, the facility meter data and the charging 

request message; (3) a web-service for interacting with the pilot study participant to handle the 

charging request; (4) an API hosted by Kisensum for bridging the LBNL server end and the 

charging station; and (5) an API hosted by ChargePoint for managing the charging station’s 

power settings. Among those components, the database, the web-service and the optimizer are 

hosted on the LBNL server. Kisensum developed a function to bridge the LBNL server and the 

ChargePoint API for the data exchange. Similarly, Kisensum developed an interface for smart 

charging control of the charging stations for the fleet vehicles only, as well as the DCFC 

charger. The main capabilities of the LBNL server and the Kisensum server are: 

 LBNL Server: 

o Web-service to:  1) handle smart charging requests; 2) interact with users; 3) data 

collection; and 4) issue control commands. 

o Database:  storage for all session data, meter data, smart charging requests. 

o Smart control optimizer:  charging schedule optimization. 

 Kisensum Server: 

o Communicates with each electric vehicle supply equipment (EVSE) via 

ChargePoint API. 

o Sends the charging session information (including user ID) from the EVSE to the 

LBNL server. 

o Sends and implements the optimal charging power settings from the LBNL server 

to the controlled EVSE. 

The following sections describe the details of the communication and the charging control 

information exchange in the system. 

Communication Information Exchange 

In the smart charging system for public EVs, as shown in Figure 13, LBNL developed a mobile 

application for interacting with the pilot study participant. When the driver plugs in the vehicle 

and activates the charging session, the Kisensum server captures the active charging session 

and passes the session data to the LBNL server. After checking whether the active charging 

session belonged to one of the pilot study participants in the database, the server sends a 

“Welcome” text message to the driver through the web-service. The text message provides a link 

to a webpage for submitting/modifying the charging request. The driver provides the estimated 
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departure time and the estimated travel distance in miles or energy in kWh for the next trip. 

Drivers who agree to participate in the smart charging control can go to the webpage using the 

same link and check on the charging status at any time during the active session period.  

The Kisensum server communicates with the charging station (EVSE) through the ChargePoint 

Web Services API (ChargePoint, 2014) to administer charging stations connected to the 

ChargePoint network. When exchanging data between a browser and a server, the data can only 

be text. The data exchanged between the LBNL server and the Kisensum is the charging session 

and meter data, which is in JSON format. 

In the communication system for public EVs, LBNL uses a Short Message Service (SMS) provider 

to send/receive notifications and charging requests to/from drivers, as illustrated in Figure 13. 

Figure 13:  Smart Charging Communication System for Public Electric Vehicles 

 

Source:  Lawrence Berkeley National Laboratory 

Figure 14 shows the SMS interactive system between the LBNL server and the study participant. 

In this study, the participant only received the text message from the LBNL server when 

plugging the vehicle into the controlled charging stations at the AlCoPark garage. The charging 

started as usual until the participant submitted the charging request, as shown in Figure 14 

(right). On the same webpage, the participant could change the departure time and/or the 

energy charge needed at any time during the charging session. 
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Figure 14:  Communication Interactions between the Lawrence Berkeley National Laboratory 
Server and the Participant 

  

Source:  Lawrence Berkeley National Laboratory 

Charging Control Information Exchange 

When participants submit their charging requests to the LBNL server through the web-service, 

the optimizer in the server first detects whether the message is new. If so, the optimizer 

initiates the optimization immediately and updates the optimized charging power sequence for 

all the controlled charging sessions in the database. Meanwhile, the LBNL web-service sends all 

the optimized charging power sequences to the Kisensum server in the JavaScript Object 

Notation (JSON) format. Last, the Kisensum server implements the optimized charging power 

sequences in the charging stations into which the participants’ vehicles plug. 

Public Smart Charging Optimization Algorithm Formulation  

As in previous work (Kara et al., 2015), the EV charging session start and end times are 

assumed to be available to the controller. In addition, it was assumed that there was no 

modulation of charging power through the optimization. In this study, in addition to the 

scheduling algorithm in (Kara et al., 2015), the control algorithms with different approaches to 

re-optimization as EVs initiate and end charging sessions were tested. The scheduling algorithm 

by the order of the variables, the constraints, and the problem formulation is described below. 

For each day’s charging scheduling, a day was divided into 15-minute demand intervals. Each 

smart charging optimization period was defined as having a start time, 𝑡𝑠𝑡𝑎𝑟𝑡, and an end time, 

𝑡𝑒𝑛𝑑. Each individual EV charging session, i, had an arrival time  𝑡𝑎
𝑖 , and a departure time, 𝑡𝑑

𝑖 . For 
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each charging session, a column vector was created using the power measurement for every 

time slot in [𝑡𝑎
𝑖 , 𝑡𝑑

𝑖 ]. If the charging duration was less than the session duration, the time series 

was zero-padded to fill the size of the optimization time period [𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑]. The power time 

series for each EV charging session 𝑖 was given as follows: 

𝑃(𝑖) = [𝑃1
(𝑖), 𝑃2

(𝑖), , 𝑃𝑘
(𝑖)]𝑇                                                           (3) 

Where 𝑘 was the total number of 15-min time slots in [𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑]. 𝑄
𝑖 elements 𝑄𝑗

𝑖  correspond to 

the 𝑗 non-zero element of 𝑃𝑖. 𝑀𝑖 was defined as the total number of non-zero power 

measurements in charging session 𝑖. The goal was to reschedule the time slots 𝑡𝑗
𝑖 in [𝑡𝑎

𝑖 , 𝑡𝑗
𝑖], 𝑡𝑗

𝑖 

corresponding to 𝑄𝑗
𝑖  without changing their order. 

The following formal constraints were introduced in (Kara et al., 2015) to capture the 

precedence and the session duration constraints. Additionally, a constraint to 𝑡𝑗
𝑖 to keep the 

continuous charging order the same as the original charging session was included. Charging 

control option (A) controlled the charging session start time while maintaining the same power 

time series 𝑃(𝑖) as the original. Charging control option (B) discretized the original charging 

session into 15-minute charging blocks without changing the order of the power time series 

𝑃(𝑖). 

(1) Option A:   

tj
(i)
≥ tstart

tj
(i)
≤ tend

tj
(i)
≥ ta

(i)

tj
(i)
≤ td

(i)

tj
(i)
+ 1 = tj+1

(i)
}
 
 
 

 
 
 

∀i ∈ [1, N],

∀j ∈ [1,M(i)]
                                                (4) 

(2) Option B:   

tj
(i)
≥ tstart

tj
(i)
≤ tend

tj
(i)
≥ ta

(i)

tj
(i)
≤ td

(i)

tj
(i)
≤ tj+1

(i)
}
 
 
 

 
 
 

∀i ∈ [1, N],

∀j ∈ [1,M(i)]
                                               (5) 

 

Constraints using a binary decision matrix to represent charging or non-charging time slots 

within the optimization duration were included. A binary vector 𝑥𝑗
𝑖 was created to include 𝑘 

binary decision variables. Each element in this vector represents a candidate time slot at which 

𝑄𝑗
𝑖  could be positioned. Row vectors 𝑥(𝑖,𝑗) ∀𝑖 ∈  [1,𝑀𝑖] and 𝑥𝑘

(𝑖,𝑗)
∈  {0, 1} were defined as well ∀𝑘 ∈

 [1, 𝐾]. 
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A binary decision matrix X𝑖 was formed for these binary vectors 𝑥𝑗
𝑖 in each charging session ∀𝑖 ∈

 [1, 𝑁]. As shown below, the individual decision variables 𝑥𝑘
(𝑖,𝑗)

 form the elements of the binary 

decision matrix X𝑖 . 

X𝑖 = [

𝑥1
(𝑖,1)

⋯ 𝑥𝐾
(𝑖,1)

⋮ ⋱ ⋮

𝑥1
(𝑖,𝑀𝑖)

⋯ 𝑥𝐾
(𝑖,𝑀𝑖)

]                                                          (6) 

As proposed in (Kara et al., 2015), the variables in the constraints given in  the constraints 

Option A and constraint Option B were defined as follows: 

𝑡𝑖 = X𝑖𝑂, 𝑤ℎ𝑒𝑟𝑒 𝑂 = [
1
⋮
𝐾
]                                                          (7) 

The aggregate power vector for the charging station 𝐴𝑃𝑑 = ∑ (𝑷(𝑖))𝑁
𝑖=0  for the day 𝑑 was given as 

follows: 

𝐴𝑃(𝑑) = [
𝑄(1)

⋮
𝑄(𝑁)

]

𝑇

[
X(1)

⋮
X(𝑁)

]                                                            (8) 

This study builds on the general optimization framework as proposed in (Kara et al., 2015). The 

optimization goal was to maximize the benefits of the smart charging control algorithm from a 

EV charging service provider's perspective. As in a typical TOU rate structure, the energy 

charges were calculated based on the amount of energy consumed over the period using the 

corresponding hour’s TOU energy rate. The demand charges were calculated based on the 

maximum power demand for specific time periods of the day during the billing period. In the 

summer season, there were separate demand charge rates for different periods – on-peak, mid-

peak and any time peak demand multiplied by the demand charge rates (see Table 2).  

In the proposed smart charging framework, 𝐸𝐶𝑑 was defined as the energy charge for day 𝑑 in a 

month with D Days (i.e. ∀𝑑 ∈  [1, … , 𝐷]). Then, 𝐷𝐶ℎ was defined as the demand charge for each 

time period ℎ of the day ℎ of any month. In the PG&E E-19 TOU rate structure, the monthly 

demand charges in winter season were calculated based on the maximum demand in two time 

periods anytime and part-peak (i.e. 8:30 a.m.-12:00 p.m. and 6:00 p.m.-9:30 p.m.). In the 

summer months, the demand charges included three components:  (1) maximum demand in 

anytime of the billing month; (2) maximum demand in on-peak time period; and (3) maximum 

demand in part-peak time period. Formally, the monthly bill was calculated as follows: 

𝑓(𝐷𝐶𝑑, 𝐸𝐶
𝑑) = ∑ 𝐷𝐶ℎ + ∑ 𝐸𝐶𝑑∀𝑑∀𝑑                                                (9) 

In the optimization problem, the energy charge 𝐸𝐶𝑑 for any day 𝑑 in a billing period was 

calculated as shown in Equation 10. The energy price for each time slot 𝑗 was defined as a 

column vector 𝐸𝑅. For time period ℎ within day 𝑑, a subset of the entire daily aggregate power 

vector 𝐴𝑃𝑑 is defined as 𝐴𝑃ℎ
𝑑. 

𝐸𝐶𝑑 = 𝐴𝑃𝑑 × 𝐸𝑅                                                                (10) 
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The maximum demand for the daily time period ℎ must be accurately known beforehand for 

the entire month. However, it is not a valid assumption when predicting the maximum demand 

for the forthcoming month due to the variations from the base load and the charging sessions. 

In the proposed smart charging framework, the peak aggregate power values were defined for 

each period ℎ as 𝐴𝑃𝑝𝑒𝑎𝑘,ℎ
𝑑 . In the daily optimization, 𝐴𝑃𝑝𝑒𝑎𝑘,ℎ represent the historic values for 

each day in [1, … , 𝑑 − 1]. Hence, the maximum of the historic 𝐴𝑃𝑝𝑒𝑎𝑘,ℎ values until 𝑑 − 1 was as 

follows: 

𝐴𝑃𝑚𝑎𝑥,ℎ
𝑑−1 = max (𝐴𝑃𝑚𝑎𝑥,ℎ

1 , … , 𝐴𝑃𝑚𝑎𝑥,ℎ
𝑑−1 )                                            (11) 

Therefore, the monthly demand charges were calculated based on 𝐴𝑃𝑚𝑎𝑥,ℎ
𝑑  and the demand rates 

𝐷𝑅ℎ for each period: 

𝐷𝐶ℎ = 𝐴𝑃𝑚𝑎𝑥,ℎ 
𝐷 𝐷𝑅ℎ                                                            (12) 

By using Equation 13, the demand charges were limited based on the maximum daily demands 

until the current day. The following optimization problem was formed to minimize the daily 

energy cost and the demand charges with time period ℎ and day 𝑑 as decision variables. 

min
𝐗(𝑖),𝐴𝑃𝑚𝑎𝑥,ℎ

(𝑑)
(𝐴𝑃𝑚𝑎𝑥,ℎ

(𝑑)
𝐷𝑅ℎ + 𝐸𝐶

(𝑑))                                           (13) 

Subject to the constraints Option A or Option B and the following additional constraints: 

∀ℎ ∈ [1, 𝑇𝑃] {
𝐴𝑃𝑚𝑎𝑥,ℎ

(𝑑−1)
≤ 𝐴𝑃𝑚𝑎𝑥,ℎ

(𝑑)

𝐴𝑃ℎ
(𝑑)

≤ 𝐴𝑃𝑚𝑎𝑥,𝑑
(𝑑)

                                                        (14) 

As seen in Equation 14, the current maximum demand 𝐴𝑃𝑚𝑎𝑥,ℎ
(𝑑)

 was insured to be greater than or 

equal to the maximum historical value 𝐴𝑃𝑚𝑎𝑥,ℎ
(𝑑−1)

 for period ℎ. Note that the demand charges for 

each period ℎ were not set by the current day d if none of the current peak values 𝐴𝑃𝑚𝑎𝑥,ℎ
(𝑑)

 

exceeded the historical maximum values 𝐴𝑃𝑚𝑎𝑥,ℎ
(𝑑−1)

. 

The following section presents the general smart charging framework for the public EVs, which 

includes the pilot study participants’ outreach and recruitment, the field test of the proposed 

control algorithm and the implementation of the entire smart charging control system. The 

effect of the smart charging control algorithm in terms of reducing the monthly energy and 

demand costs of EV charging are presented. 

Direct Current Fast Charging Smart Charging Strategy and Approach 

The installed DCFC charging station supported both CHAdeMO and SAE Combo Charging 

System with a 50 kW maximum output. To reduce the power spike from a DCFC charging 

session on the total demand, a control strategy was developed that reduced the charging power 

of concurrent fleet Level 2 charging sessions to Level 1 charging power level.  

In August 2017, AlCoPark garage installed a Level 3 DCFC charging station (ChargePoint model 

CPE 200) with 1 SAE Combo and 1 CHAdeMO connectors for use by both public and fleet EVs, in 

particular for the quick turnaround of fleet vehicles. The first charging session on this DCFC 
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charging station was observed on September 1, 2017. Figure 15 shows a clear spike of 30-50 kW 

for about 30 minutes during the DCFC charging session. 

Figure 15:  AlCoPark Garage Electricity Demand in a week of September 2017 

 

Source:  Lawrence Berkeley National Laboratory 

To better understand the charging behavior of DCFC charging sessions, the researchers 

analyzed the arrival/departure times and the monthly number of DCFC charging sessions. 

Figure 16 shows that the majority of charging sessions were in the afternoon hours. When the 

spike of DCFC charging power was observed during the day, especially during on-peak hours, 

the facility manager started “Happy Hours” that provided lower costs for public DCFC charging 

after 7 p.m. to encourage a shift to off-peak hours. 

While the monthly facility peak demand increased along with the number of charging sessions, 

it increased even further with the use of the DCFC charging station. Figure 17 presents the 

monthly DCFC charging sessions since the first use of the DCFC charging station. There were 

136 monthly DCFC charging sessions by February 2018. There were about 3.5 DCFC sessions 

per day, on average, with more sessions on weekdays compared to weekend days. Therefore, 

there was a good chance that the monthly peak demand and/or on-peak demand in summer 

period would be set by DCFC charging sessions.  
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Figure 16:  Arrival/Departure Time of Direct Current Fast Charging Sessions 

 

Source:  Lawrence Berkeley National Laboratory 

Figure 17:  Monthly Direct Current Fast Charging Sessions in 2017 

 

Source:  Lawrence Berkeley National Laboratory 

To reduce the power spike from a DCFC charging session on the total demand, a control 

strategy limiting the charging power of concurrent fleet Level 2 charging sessions to Level 1 

charging power level was implemented. The specific control logic for reducing the demand of 

fleet sessions during DCFC charging sessions was as follows:  For every minute, whenever the 

smart charging control system received a “DCFC session start” notification, the system took a 

reading of the DCFC demand, and: 

 If the load was more than 10 kW, fleet stations 002, 003 and 004 were set to charge at 

1.65 kW (station 001 was not controlled). 

 If the load was less than 10 kW, any fleet station (002, 003, and 004) that had been set 

to 1.65 kW due to a DCFC override was returned to its default state. 
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CHAPTER 4: 
Smart Charging Results 

Fleet Smart Charging Results 
On February 9, 2017, the first control strategy was implemented:  no charging for fleet stations 

between 8:30 a.m. and 9:30 p.m., except ALCOBASE4000-002, 003 and 004. Figure 18 shows the 

comparison of the charging power before and after the implementation of charging control 

between February 14, 2017 and February 17, 2017. The red areas in the graph represent the 

original charging power without any restriction on charging sessions, and the blue areas 

represent the actual charging power from the controlled charging stations. All the charging 

sessions on the controlled stations were postponed successfully from high cost periods 

(between 8:30 a.m. and 9:30 p.m.) to lower cost periods (after 9:30 p.m.).  

Figure 18:  Comparison of Charging Power before and after Implementation on February 9, 2017 

 

Source:  Lawrence Berkeley National Laboratory 

The mid-peak demand was reduced by 20kW between February 9, 2017 and February 27, 2017, 

as shown in Figure 19. However, a new higher peak demand of 68 kW was observed when all the 

controlled stations started to provide charging power at 9:30 p.m. This peak did not create a 

new monthly peak, however, due to the base load “valley” at that time, but there was a risk of 

setting a new peak with this course control scheme. After about two weeks of implementing 

this charging control, a staged scheduling approach was implemented. 
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Figure 19:  Effects of Charging Control of Fleet Electric Vehicles between February 9-27, 2017 

 

Source:  Lawrence Berkeley National Laboratory 

On February 27, 2017, the staged approach was implemented with the following charging 

schedules:  4 ports starting at 9:30 p.m., 5 ports starting at 11:30 p.m., and 5 ports starting at 

1:30 a.m. This fixed the issue of the new higher peak demand with the first control strategy, as 

shown in Figure 20. The new peak demand was very close to the original charging power and 

reduced energy charges by nearly half since most of the original charging sessions started 

during the on-peak period.  

Figure 20:  Comparison of Charging Power before and after Implementation on February 27, 2017 

 

Source:  Lawrence Berkeley National Laboratory 

The promising results of the staged control strategy led to a further modification of the 

charging schedules on March 6, 2017:  4 groups of the delayed charging control stations (9:30 

p.m., 11:30 p.m., 1:30 a.m., and 3:30 a.m.). The fleet management staff asked that fewer 

charging stations be subject to the restricted charging schedule so that they could do more on-

demand charging. This reduced the savings potential of the smart charging strategy. 

As shown in Figure 21, there were multiple charging power spikes at the start time of each 

scheduling period. Through this control strategy, the new peak demand did not exceed the 

original peak demand while shifting the charging power from the high electricity cost periods 

to the lowest period. 
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Figure 21:  Comparison of Charging Power before and after Implementation on March 6, 2017 

 

Source:  Lawrence Berkeley National Laboratory 

The scheduled smart charging has been continuously operating since its implementation in 

March 2017. As shown in Figure 22, the peak demand during the on- and mid-peak periods was 

reduced by 10.7 kW and 13.3 kW respectively during a week in the summer period. 

Figure 22:  (a) Daily Charging Power Profiles and (b) On-Peak Demand on Weekdays with the 
Control of Charging Stations for Fleet Electric Vehicles 

 

Source:  Lawrence Berkeley National Laboratory 

To calculate the demand and cost savings from the smart charging controls, the controlled 

charging session demand profiles were re-created as if they had not been controlled.  

The data collected for each charging session included the connect and disconnect time. The 

demand profile of each controlled session was converted to the demand profile that would have 

existed had it not been controlled by assuming that session would have charged at its 

maximum rate, for example 6 kW for the Level 2 fleet and public stations, starting at the 

session connect time rather than the smart charging scheduled start time. The total energy 

delivered was the same for the re-created sessions as the actual controlled sessions. The E-19 

tariff values were then applied to the aggregate re-created session profiles to calculate the costs 
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as if controls had not been implemented. These costs were compared to the actual costs to 

determine the demand and cost savings from the smart charging control approach. As 

presented in Figure 23, the implementation of the smart charging control of the fleet EVs 

achieved cost savings of $946 between February 2017 and early August 2017, representing 1.8 

percent of the total utility bill in 2017. In the summer months (May-October), the total cost 

savings was $743 and the average savings was $241. 

Figure 23:  Comparison of Monthly Utility Costs from Uncontrolled and Controlled Charging of 
Fleet Electric Vehicles 

 

 

Source:  Lawrence Berkeley National Laboratory 

In 2017, nearly 1,000 charging sessions were controlled for minimizing the peak demand of 

fleet EVs, which was about 25 percent of the total fleet charging sessions. The number of 

controlled fleet charging sessions was around 100 sessions per month, as shown in Figure 24. 

In addition, the average cost savings per session was about $1.80 per session. 

To date, 10 of 24 dedicated fleet charging ports have implemented the smart charging control. 

Hypothetically, if this smart charging control strategy were deployed for all fleet charging ports 

with all fleet charging sessions controlled, the annual cost savings was estimated to be $10,244 

and the cost saving per session would be $2.40 ($3.20 in summer and $1.40 in winter). 
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Figure 24:  Monthly Controlled/All Fleet Charging Sessions in 2017 

 

Source:  Lawrence Berkeley National Laboratory 

Figure 25:  Cost Savings from All Fleet Sessions being Controlled 

 

Source:  Lawrence Berkeley National Laboratory 

Fleet Electric Vehicle Smart Charging Lessons Learned 

The charging behavior indicated from the charging session dataset shows that most fleet EVs 

return to be charged during on-peak hours. This leads to very high demand charges from all the 

fleet EVs being charged simultaneously. Implementing smart charging control on only 25 

percent of the fleet charging sessions reduced 44.3 percent of the original on-peak demand 

without any impact on the use of fleet EVs the next day. The larger number of fleet EVs 

compared to the number of chargers limits the cost savings potential from the smart charging 

control. In addition, fleet staff could not rotate vehicles to available chargers outside of garage 

operating hours (7 a.m.-7 p.m.). 

Given the current limitations, a better coordinated fleet charging system would improve the 

performance and reduce utility costs by linking fleet vehicle trip management with the smart 

charging control.  
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Public Smart Charging Results 

Pre-Pilot Field Testing  

The researchers conducted field tests using the project team members’ vehicles to validate the 

performance of the smart control algorithm for the public charging stations and the entire 

communication and control architecture. Main tasks included: 

 Testing the control and communication flow of the platform end-to-end. 

 Validating the capabilities and functions of each system component. 

 Validating the optimal charging control algorithm for demand management. 

Figure 26 depicts the end-to-end testing of the smart charging control system for public EVs at 

the AlCoPark garage.  

Figure 26:  End-to-End Testing of Smart Charging Control System for Public Electric Vehicles 

 

 

Source:  Lawrence Berkeley National Laboratory 

The participants’ ChargePoint user IDs were stored in the LBNL database. Participants received 

a text message within one minute after they connected their EV and activated a charging 

session. A webpage link, “Charging Request Form,” was sent in the text message as shown in 

Figure 14. Participants entered their planned departure time and estimated needed energy 

(kWh) or distance (miles) for their trips following charging at the AlCoPark Garage. After 

participants submitted their requested information to the LBNL server through the web service, 

the charging control optimizer used the participants’ charging request data to generate the 

optimal charging plan for each current active participating charging session. The optimal 

charging plan was sent to the participating charging stations through the Kisensum server and 
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ChargePoint API. When charging was completed or the charging session was ended by the 

participant disconnecting from the station, the optimal charging plan was terminated 

immediately and the controlled charging station was reset back to normal operation. During the 

charging process, drivers could check the status of their charging sessions at the “Charging 

Request Form” webpage at any time to see how much energy had been delivered and what time 

the charging request would be completed. 

On May 4, 2017, two Nissan Leaf electric vehicles owned by study researchers were used to 

conduct an end-to-end testing of the smart charging control for public EVs. Table 3 presents 

the testing vehicles for the control of public charging stations. For this test, the performance of 

the smart control algorithm was evaluated in terms of the following metrics: 

 Optimized charging power sequence vs. actual charging power sequence. 

 Requested charging power energy vs. actual charging power energy. 

During the testing, the real charging power was automatically logged from the charging stations 

to the database to validate against the optimized charging power sequence. In addition, the 

actual charged energy kWh was compared with the requested energy kWh and/or travel 

distance in miles. Through the end-to-end communication and control testing, the capability of 

the smart charging control system for minimizing the contribution of public charging demand 

of multiple EVs to peak demand was demonstrated without negative impact on the drivers’ 

charging needs.  

Table 3:  Testing Vehicles for Public Charging Stations 

Participants EV Model Capacity (kWh) 

# 1 2017 Nissan Leaf 30 

# 2 2016 Nissan Leaf 24 

Source:  Lawrence Berkeley National Laboratory 

During the testing period, testing for both EV #1 and EV #2 followed the optimal charging plan 

well except that the vehicles stopped being charged when the planned charging power was less 

than a certain level. To address this issue, the charging plan of EV #1 was interrupted and the 

approximate lower limit of the charging power was identified as 1.5 kW. This is a significant 

limit that was applied to all controlled charging sessions. Previous studies have assumed that 0 

kW was the lower limit charging power constraint in simulating and analyzing optimal charging 

control scenarios. A comparison between the meter readings of 2.30 kWh and the reported 2.37 

kWh from the ChargePoint application was observed to confirm that the scheduled charging 

power plans were implemented sufficiently accurately. 

After the initial testing, the charging power lower limit was set to 1.5 kW to avoid having a 

charging vehicle’s own battery protection override a charging request. On August 21, 2017, the 

team conducted another test of the charging control system to validate the charging power 

lower limit set point.  
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Figure 27:  Testing Events on May 4, 2017 

 

Source:  Lawrence Berkeley National Laboratory 

As shown in Figure 28, there was no power interruption during the testing period (red area). 

After this, the option of “opt-out” charging control during the charging session was tested. It 

was observed that the charging power was reset back to the normal level of around 6 kW within 

5 minutes. A driver could come back to participate into the program again by submitting a new 

charging control request on the same webpage. 

Figure 28:  Testing of the Charging Power Lower Limit for Public Electric Vehicles 

 

Source:  Lawrence Berkeley National Laboratory 

As described in Table 4, at 11:43 a.m., a driver sent a new message to the server and requested 

a revised departure time of 12:30 p.m.. By the end of the charging session, the vehicle received 

nearly 10.5 kWh in comparison to the requested energy of 10 kWh. 

In July 2017, a recruitment letter was sent to potential drivers who were charging at least twice 

per week at the public charging stations. By October 2017, LBNL had recruited 7 active 
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participants (and 3 that agreed to participate but did not) into the pilot study. During this 

period, there were 33 participating charging sessions.  

Table 4:  Smart Charging Control Logs on the Testing Event 

Timestamps Actions in the Charging Control 

09:36:55 Driver received a text message and requested 10kWh charging energy. 

09:40:00 
Optimal charging started and it was observed that the charging power was low when 
the total charging power of all public stations was high. 

10:36:32 Driver sent the “max-out”/”opt-out” message to opt-out the program. 

10:40:00 
Optimal charging control was interrupted and the charging power was reset back to 
normal. 

11:43:44 
Driver sent another message to the server and requested the leaving time at 12:30 
p.m.. 

Source:  Lawrence Berkeley National Laboratory 

The researchers calculated the following metrics for each participant:  participating sessions, 

contribution to the daily peak electricity demand reduction, and charged energy kWh against 

requested kWh. An example of a participant performance report is shown in Table 5, Table 6, 

and Figure 29.  

Table 5:  Example Study Participant Report in Summer 2017 

Month August September October Total 

Charging Sessions 2 12 9 23 

Participating Sessions 2 9 0 11 

Participation Rate 100% 75% 0% 48% 

Source:  Lawrence Berkeley National Laboratory 

Figure 29:  Contribution to Daily Peak Electricity Demand Reduction in Summer 2017 

 

Note:  Daily peak demand savings shown in green are the amount of kW shed from this or/with other participants. 

Source:  Lawrence Berkeley National Laboratory 



39 

Table 6:  Smart Charging Program Participation History 

Date Estimated kWh Charged kWh Meet Requested kWh/Miles Charge To Full 

8/29/2017 14.3 14.8 Y n/a 

8/30/2017 24.0 14.4 n/a n/a 

8/31/2017 24.0 15.4 n/a n/a 

9/1/2017 24.0 15.8 n/a Yes 

9/5/2017 24.0 14.9 n/a Yes 

9/6/2017 24.0 13.8 n/a Yes 

9/8/2017 24.0 16.5 n/a Yes 

9/11/2017 24.0 15.4 n/a Yes 

9/12/2017 24.0 14.2 n/a Yes 

9/13/2017 24.0 14.0 n/a Yes 

9/15/2017 24.0 9.5 n/a Yes 

Source:  Lawrence Berkeley National Laboratory 

Overall Performance of Public Smart Charging 

The smart charging control system for public charging was launched on August 29, 2017. Pilot 

study participants contributed to reducing the daily peak demand and the on-peak demand in 

particular. Figure 30 presents an example of the charging control of one participant’s EV 

charging on September 26, 2017. The dotted red line and solid blue line represent the power 

demand of the uncontrolled and controlled public EVs, respectively. The peak demand of the 

uncontrolled EV was reduced from 6 kW to 2 kW. In this study, the uncontrolled charging 

power sequence was reproduced by using the actual charged energy kWh and assuming the 

normal charging power of 6 kW. 

Figure 30:  Charging Control of Public Electric Vehicles on September 26, 2017 

 

Source:  Lawrence Berkeley National Laboratory 
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Figure 31 (a) depicts the daily charging power profiles on weekdays during this period. The 

pattern is a very typical charging power profile in commercial public charging stations. The 

peak demand was observed in the early morning of the weekday. By implementing the smart 

charging control during pilot study participants’ sessions, the monthly peak demand reduction 

was 4.4 kW between August 28, 2017 and September 28, 2017. Daily peak demand reductions 

ranged from 1 kW to 6 kW, depending mostly on the number of participant sessions. Daily peak 

demand reductions ranged from 3.8 percent to 17.9 percent with an average of 12.0 percent.  

 

Figure 31:  (a) Daily Charging Power on Weekdays and (b) Daily Peak Demand on Weekdays 
between August 28, 2017 and September 28, 2017 

 

Source:  Lawrence Berkeley National Laboratory 

One or two pilot study participants joined in the smart charging control of charging sessions 

during this period. Throughout the summer period in 2017, the researchers observed the 

maximum value of the daily peak demand reductions on October 12, 2017 (Figure 32). The daily 

peak demand reduction varies from day to day, and was mostly affected by the number of 

participating charging sessions when the total charging demand was high. 

As discussed above, the performance of pilot study participants was evaluated by the number 

of participating sessions in the smart charging control, as well as the contribution to the daily 

peak demand reduction. Table 7 presents the participation rate summary of all the participants 

in the pilot study between August 29, 2017 and October 31, 2017. Nearly 50 percent of 

participants’ charging sessions joined the smart charging control by providing their requested 

charging energy and departure time. 

Table 7:  Participation Rates in the Pilot Study between August 29-October 31, 2017 

 #1 #2 #3 #4 #5 #6 #7 Sum 

Charging Sessions 1 6 4 20 23 11 4 69 

Participating Sessions 1 2 0 10 11 6 3 33 

Participation Rate 100% 33% 0% 50% 48% 55% 75% 48% 

Source:  Lawrence Berkeley National Laboratory 
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Figure 32:  Daily Peak Demand Reductions between August 29, 2017 and October 31, 2017 

 

Source:  Lawrence Berkeley National Laboratory 

On October 12, 2017, four participants were charging at the same time in the early morning and 

all of them responded to the request from the smart charging control with the charging energy 

and departure time. After implementing the optimal charging power schedule for each 

participant’s charging session, the aggregated power demand was controlled to optimized 

charging schedules in blue from the original uncontrolled load profile in red, as shown in 

Figure 33. Considering only the pilot study participants, the daily peak demand was reduced by 

7 kW as shown in Figure 33 (a). During the original peak period from 8 a.m. to 11 a.m., the peak 

demand was reduced from 24 kW to 10 kW. Figure 33 (b) depicts the total charging power of all 

the public charging stations which was decreased by 12 kW, about 27 percent of the original 

uncontrolled peak demand. This shows that the smart charging control system successfully 

reduces the charging power of public EVs. 

Figure 33:  Results of Charging Control for Public Electric Vehicles on October 12, 2017  

 

Source:  Lawrence Berkeley National Laboratory 

Multiple Location Smart Charging 

Considering the aggregation of EVs into the grid services on the electricity market, the smart 

charging control system was tested simultaneously in different locations. For this testing, the 

charging stations were located at three Alameda County operated sites, two in Oakland and one 

in San Leandro.  
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On October 31, 2017, three EVs were coordinated to optimally charge simultaneously at each of 

three different locations. Testing vehicles are presented in Table 8. As shown in Figure 34, three 

vehicles began charging at different times of the day.  

Table 8:  Testing Vehicles for Locational Based Scheduling Control 

Participants EV Model Capacity (kWh) 

# 1 2015 Nissan Leaf 24 

# 2 2017 Nissan Leaf 30 

# 3 2016 Nissan Leaf 24 

Source:  Lawrence Berkeley National Laboratory 

Public Electric Vehicle Smart Charging Lessons Learned  

Typically in the literature, the lower bound of charging power settings has been neglected in the 

optimization problem for achieving the optimal charging power sequence. In this study, 

charging power interruption was observed when the charging power setting was less than 1.5 

kW. Frequent power interruptions may lead to the end of charging sessions earlier than 

expected. It can cause “range anxiety” for the driver of the charging controlled EV due to the 

unexpected delivery of less than expected charging energy. 

 

 

Figure 34:  Results of Locational Based Scheduling Control on October 31, 2017 

  

Source:  Lawrence Berkeley National Laboratory 

A top priority of a smart charging control system must be that the request of charging energy 

be guaranteed by the end of the charging session without any compromise of the charging 

request. In the smart charging control system developed here, a safety factor of 1.2 on the 
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driver’s submitted charging energy kWh was implemented to offset the difference between the 

scheduling power setting and the real charging power during the charging session. In this 

study, the charging activities of the pilot study participants were summarized into performance 

reports for each participant. The requests for smart charging control were fulfilled by either 

being fully charged by the end of the charging session or being charged with the requested 

charging energy. The goal of demand and cost savings under the TOU tariff was demonstrated 

by this smart charging control system. 

Difficulties were encountered in recruiting and maintaining volunteers for study participation. 

Future studies of a similar nature would benefit from more knowledge and information on 

incentivizing human behavior with respect to public participation recruitment and retention. 

Direct Current Fast Charging Smart Charging Results 
The control strategy for managing the DCFC charging power spike by reducing concurrent fleet 

charging session demand was implemented starting September 10, 2017. Figure 35 shows the 

power demand of DCFC charging sessions (the blue solid line) and the aggregated power 

demand of concurrent fleet station sessions (the red dotted line). The power demand of the 

second DCFC charging session at 12 p.m. is more than 40 kW in the first 15 minutes.  

 

Figure 35:  Direct Current Fast Charging on September 21, 2017 

 

Source:  Lawrence Berkeley National Laboratory 

There were two concurrent fleet sessions in the active charging mode during the period of this 

DCFC charging session. Results presented in Figure 36 indicate that the control strategy was 

successfully implemented on the concurrent fleet sessions when the DCFC charging was on. 

The charging power of the fleet sessions was reset to 1.65 kW from the normal Level 2 charging 

power of 6 kW.  

 



44 

Figure 36:  Power Limits on AlcoBase Charging Stations with Direct Current Fast Charging on 
September 21, 2017 

 

Source:  Lawrence Berkeley National Laboratory 

In October 2017, the monthly peak demand was 127 kW, which was nearly 20kW lower than in 

September 2017. There were 76 DCFC charging sessions in September and 78 in October. As 

indicated in Figure 37, on the original peak day (October 17, 2017) when the DCFC session was 

on, there were 14 kW shed by limiting the charging power on the fleet charging stations. On the 

new peak day of October 20, 2017, 3.6 kW were shed. 

Figure 37:  Smart Control of Direct Current Fast Charging Sessions in October 2017 

 

Source:  Lawrence Berkeley National Laboratory 

The performance of the control strategy for managing the DC fast charging obviously depends 

on the number of active charging sessions on the fleet stations. Figure 38 depicts the whole 

building power with highlighted segments indicating DCFC charging sessions. There was no 

reduction of power demand for the DCFC charging sessions that occurred at 7 a.m. and 10:30 

a.m. Active charging sessions on the controlled fleet stations at 6 p.m. led to a reduction of 

nearly 16 kW at the time of a DCFC session. 
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Figure 38:  Whole Building Power with Highlighted Direct Current Fast Charging on               
October 3, 2017  

 

Source:  Lawrence Berkeley National Laboratory 

To better understand the impact of the smart charging control for DCFC charging sessions, 

Figure 39 shows the summary of demand reductions from controlled charging stations from 

August 2017 to February 2018. The maximum power reduction is 26 kW, which is more than 

half of the DCFC charging maximum demand. The median value of the power reductions was 

4.3 kW, which is equal to the kW shed from one active charging session. Overall, the deployed 

charging control of the controlled fleet stations successfully offset the power spike related to 

DCFC charging sessions. 

Figure 39:  Demand Reduction from Controlled Charging Stations During Direct Current Fast 
Charging Sessions 

 

Source:  Lawrence Berkeley National Laboratory 

Smart Charging for Direct Current Fast Charging Lessons Learned 

DCFC charging can contribute to significantly high energy and demand charges on the utility 

bill, especially when it is on during the on-peak period. Considering the operation of fleet EVs 
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by Alameda County, it is recommended to limit the charging power on selected fleet charging 

stations when the DCFC charging is on. Such a short period of charging power limit does not 

have much effect on the charging sessions of fleet vehicles, because fleet vehicles usually get 

charged over long periods, and often overnight, in the garage. On the other hand, privately 

owned EVs are not suitable for such a control strategy due to the “range anxiety” that it could 

cause drivers. 

Clearly, the performance of this control strategy for managing the power spike from DCFC 

charging in a short period varies along with the number of active charging sessions at the fleet 

stations. Each active charging session can easily contribute about 4.5 kW of power reduction to 

offset the DCFC demand spike.  

Smart Charging Summary 
In 2017, smart charging control strategies for fleet and DCFC were implemented in February 

and August separately. The primary period for public smart charging was from August to 

October. The total cost savings in 2017 was $2,651, which includes $1,697 for fleet vehicles, 

$169 for public vehicles, and $785 for DCFC (Figure 40). 

 

Figure 40:  Summary of Cost Savings from Fleet, Public, and Direct Current Fast Charging in 2017 

 

Source:  Lawrence Berkeley National Laboratory 

Fleet Electric Vehicles 

In 2017, nearly 1,000 charging sessions were controlled to minimize the peak demand of fleet 

EVs, which represented about 25 percent of total fleet charging sessions. The average cost 

saving per session was about $1.80. In one week during a summer month, the peak demand 

during the on- and mid-peak periods was reduced by 10.7 kW and 13.3 kW, respectively. 

When the controlled fleet sessions were the only electric load at the site, the cost savings from 

smart charging ranged from 15 percent to 30 percent (Figure 41). 
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Figure 41:  Cost Savings Considering Only Smart Charged Fleet Sessions at AlCoPark Garage in 
2017 

 

Source:  Lawrence Berkeley National Laboratory 

Public Electric Vehicles 

For the pilot study participants only, daily peak demand was reduced by 7.0 kW. During the 

original peak period from 8 a.m. to 11 a.m., peak demand was reduced from 24.2 kW to 10.0kW. 

The total charging power of all the public charging stations decreased by 12.0 kW, which is 26.7 

percent of the original uncontrolled peak EV charging demand. 

The controlled sessions for the pilot study participants represented 53.2 percent of their total 

charging sessions, while the controlled sessions for public participants represented 4.6 percent 

of their total sessions.  Overall, the cost saving per participating session was $2.50 per session 

for the public charging (Figure 42). 

Figure 42:  Cost Savings Considering Only Smart Charged Public Sessions at AlCoPark Garage in 
August-December 2017 

 

Source:  Lawrence Berkeley National Laboratory 

Direct Current Fast Charging 

For DCFC charging, the maximum power reduction was 20 kW, which is nearly half of the DCFC 

charging power in the normal mode. The median value of the power reductions is 4.3 kW, which 

is equal to the kW shed from one active charging session (Figure 43). 
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Figure 43:  Cost Savings Considering Only Smart Charged Direct Current Fast Charging Sessions 
at AlCoPark Garage in September-December 2017 

 

Source:  Lawrence Berkeley National Laboratory 
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CHAPTER 5:  Market Opportunities for 
Electric Vehicles 

Introduction 
The primary goal of this project was to achieve lower operating costs by controlling EV 

charging for demand charge mitigation and to take advantage of time-of-use rates. In addition, 

new revenues will be enabled by controlling EV charging to offer grid services including 

demand response (DR) and ancillary services. LBNL performed simulations to evaluate the 

potential cost benefit of using controlled EV charging to enable the offering of grid services like 

demand response 

Considering the complexity of the multiple energy markets and the real-world constraints of 

electric vehicles, LBNL selected multiple DR products in the retail and wholesale electricity 

markets as targets to integrate EVs. The researchers considered (1) the time-of-use (TOU) tariff 

that includes the energy charge and the demand charge, as well as the peak-day pricing (PDP) 

program; (2) the demand bidding program (DBP) in the retail electricity market; (3) the proxy 

demand resource (PDR) program; and (4) ancillary services on the wholesale energy market 

(Table 9). For markets with a minimal participation threshold, LBNL adapted the methods used 

in unit commitment with auxiliary integer variables to indicate whether or not the aggregated 

resources will be engaged in the markets. In addition, for markets that require a minimal 

commitment length, LBNL brought in auxiliary binary decision variables with specific 

constraints to guarantee the commitment period is larger than the minimal threshold if the 

resource is scheduled to participate in the market. Specifically, for frequency regulation 

markets, LBNL adapted the modeling and evaluation approaches in (DeForest, MacDonald, & 

Black, 2018), inspired by the real-world regulation signals collected from California energy 

markets.  

Table 9:  Demand Response Products in the Retail and Wholesale Electricity Markets 

Electricity Markets Programs/Products 

Retail 

Peak Day Pricing  

Demand Bidding Program 

Wholesale 

Proxy Demand Resource 

Frequency Regulation 

Source:  Lawrence Berkeley National Laboratory 
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California Demand Response Markets 

The California Independent System Operator (CAISO) offers wholesale market aggregators the 

PDR product that enables them to offer DR resource directly into the wholesale energy and 

ancillary services market and allows non-generator resources to bid their 15-minute capacity 

into the regulation market as well. The PDR resources can bid economically into the following 

markets:  (1) day-ahead energy market with the minimum load curtailment of 100 kW; (2) day-

ahead and real-time non-spinning reserve market with the minimum load curtailment of 500 

kW; and (3) 5-minute real-time energy market. Additionally, smaller loads may be aggregated 

together to achieve the minimum load curtailment. PDR is only a load curtailment product, 

which is not enabled for load increase, so negative DR energy management (for example, the 

use of battery discharge for PDR) is set to zero for the settlement of PDR. 

Simulation Structure Overview 

In LBNL’s simulation, EV load was modeled as deferrable load that can be shifted to different 

time windows to achieve various grid objectives in different energy markets. Accordingly, 

optimization-based strategies were developed that allow the EV fleet manager to coordinate the 

integration of EVs with multiple different market strategies to minimize the energy cost for 

serving the transportation required from the fleet EVs. The aggregate EV controller would 

retrieve day-ahead pricing information from multiple DR markets from CAISO servers and 

collect the EV usage info, including energy demand and itineraries, from individual EV drivers. 

This communication has already been enabled in the demonstration project. During the next-

day operation, each EV follows the day-ahead schedule in each time step to fulfill its own 

energy demand. For all DR markets modeled in this project, the pricing information can be 

obtained a day ahead, thus no online operations are needed. For the real-time regulation signal, 

LBNL used the utilization factors to model its impact.  

Nomenclature 

The important parameters and variables in the simulation are: 

Indices and Sets 

𝐷, 𝑑   days in each month, day index 

𝐷𝑃𝐷𝑃 , 𝑑𝑃𝐷𝑃 PDP event days, PDP day index 

𝑇, 𝑡   time steps for one single day, time index 

𝑇𝑃𝐷𝑃 , 𝑡𝑃𝐷𝑃 time steps during PDP event, time index in PDP days 

𝑇𝑃   time steps in peak periods;  

𝑇𝑃𝑃   time steps in part-peak periods;  

𝑇𝑀   time steps in global maximal periods;  

𝐼, 𝑖  demand charge periods including peak, part-peak and global maximal periods, 

index of demand charge periods 



51 

𝑇𝑖    time steps for demand charge period 𝑖 

𝑁𝑝
𝑑(𝑡)   plugged-in vehicles at time 𝑡 on day 𝑑 

 

Parameters and Variables 

𝑏𝑛
𝑑(𝑡)  binary charging indicator for vehicle 𝑛  

𝑝𝑛
𝑑(𝑡)  charging power for vehicle 𝑛 at time 𝑡 on day 𝑑 

𝑝   minimal effective charging power 

𝑝  maximal effective charging power 

𝑒𝑛
𝑑(𝑡)   energy charged to vehicle 𝑛 by time 𝑡 on day 𝑑 

𝑒𝑛,𝑟𝑒𝑞
𝑑    energy requested by vehicle 𝑛 on day 𝑑 

𝑡𝑛
𝑑,𝑎   arrival time of vehicle 𝑛 on day 𝑑 

𝑡𝑛
𝑑,𝑙   departure time of vehicle 𝑛 on day 𝑑 

𝑒𝑛,𝑑
+/−

(𝑡)   fastest/slowest accumulated energy boundaries of vehicle 𝑛 by time 𝑡 on day 𝑑 

𝐸𝑑
+/−

(𝑡)  fastest/slowest accumulated energy boundaries of the virtual battery by time 𝑡 

on day 𝑑 

𝑃𝑑(𝑡)   aggregated charging power by time 𝑡 on day 𝑑 

𝐿𝑑(𝑡)  baseload at time 𝑡 on day 𝑑 

𝜂𝑐  charging efficiency 

𝜆(𝑡)  energy charge rate for time 𝑡 

𝜔𝑖  demand charge rate for demand period 𝑖 

𝑃𝑃𝐷𝑃
𝐶𝑅    capacity reserve value for PDP policy 

𝜆𝑃𝐷𝑃  energy charge rate during PDP events 

𝐶𝐸𝐶  monthly energy charge cost 

𝐶𝐷𝐶  monthly demand charge cost 

𝜋𝑃𝐷𝑃
𝑝

  PDP credit rate for peak demand period 

𝜋𝑃𝐷𝑃
𝑚   PDP credit rate for global-max demand period 

𝑅𝑃𝐷𝑃
𝑚   PDP credit for global-max demand periods 

𝑅𝑃𝐷𝑃
𝑝

  PDP credit for peak demand periods 

𝐶𝑃𝐷𝑃  monthly energy charge during PDP events 

𝑅𝐴𝑆   monthly revenue from ancillary service market 
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𝜋𝑢𝑝
𝑑 (𝑡)  regulation up price at time 𝑡 on day 𝑑 

𝜋𝑑𝑜𝑤𝑛
𝑑 (𝑡) regulation down price at time 𝑡 on day 𝑑 

𝑅𝑢𝑝
𝑑 (𝑡)  regulation-up bid at time 𝑡 on day 𝑑 

𝑅𝑑𝑜𝑤𝑛
𝑑 (𝑡) regulation-down bid at time 𝑡 on day 𝑑 

𝜌𝑢𝑝  utilization factor of regulation up signals 

𝜌𝑑𝑜𝑤𝑛  utilization factor of regulation down signals 

𝐵𝑑(𝑡)  aggregate power baseline at time 𝑡 on day 𝑑 

𝑏𝑎𝑔𝑔
𝑑,𝐵/𝑃(𝑡) binary indicator for aggregate baseline/actual power at time 𝑡 on day 𝑑 

𝑏𝑎𝑔𝑔
𝑑,𝑟𝑢/𝑟𝑑(𝑡) binary indicator for aggregate regulation up/down power at time 𝑡 on day 𝑑 

𝑏𝑎𝑔𝑔
𝑑,𝑏𝑢/𝑏𝑑(𝑡) binary indicator for aggregate power with full up/down signals at time 𝑡 on day 𝑑 

𝑏𝑑𝑜𝑤𝑛
𝑑 (𝑡) binary regulation-down indicator at time 𝑡 

𝑅𝑢𝑝/𝑑𝑜𝑤𝑛 min. threshold in regulation up/down markets 

𝑅𝑃𝐷𝑅  Revenue in PDR markets 

𝑅𝑠𝑒𝑙𝑙
𝑑 (𝑡)  Virtual sell power at time 𝑡 on day 𝑑 

𝜋𝑝𝑑𝑟
𝑑 (𝑡)  PDR market price at time 𝑡 on day 𝑑 

𝑏𝑎𝑔𝑔
𝑠𝑒𝑙𝑙 (𝑡)  binary indicator for sell power in PDR market 

𝑅𝑠𝑒𝑙𝑙
𝑃𝐷𝑅  min. power threshold on PDR market 

𝑅𝐷𝐵𝑃  Revenue from DBP market 

𝜋𝐷𝐵𝑃  credit rate on DBP market 

𝑅𝑟𝑑𝑐
𝑑 (𝑡)  reduced power due to DBP events at time 𝑡 on day 𝑑 

𝑏𝐷𝐵𝑃
𝑑 (𝑡)  binary indicator for DBP power reduction at time 𝑡 on day 𝑑 

Modeling Electric Vehicles in Multiple California Demand 
Response Markets 

Aggregation of Electric Vehicles 

For each individual vehicle 𝑛 on day 𝑑, the following constraints should be satisfied. 

𝑏𝑛
𝑑(𝑡) ⋅ 𝑝 ≤ 𝑝𝑛

𝑑(𝑡) ≤ 𝑏𝑛
𝑑(𝑡) ⋅ �̅� (1) 

𝑒𝑛
𝑑(𝑡 + 1) = 𝑒𝑛

𝑑(𝑡) + 𝑝𝑛
𝑑(𝑡) ⋅ 𝜂𝑐 ⋅ 𝛥𝑡 (2) 

𝑒𝑛
𝑑(𝑡𝑛

𝑑,𝑙) ≥ 𝑒𝑛,𝑟𝑒𝑞
𝑑  

(3) 
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𝑏𝑛
𝑑(𝑡) in equation (1) is the indicator of whether vehicle 𝑛 is charging at time 𝑡. Note that the 

feasible charging range is not continuous so as to model the real-world EV chargers. When 𝑏𝑛
𝑑(𝑡) 

is set to 0, both the left- and right-hand sides are 0, constraining the charging power to 0, that 

is, the inactive state. For the active state, the charging power threshold 𝑝, i.e. minimal charging 

power, is set to 1.5 kW, which corresponds to the limit of the chargers used in the 

demonstration project. Equation (2) indicates the accrual of energy consumption for each 

vehicle and the energy consumption value at the time of charging session finish time 𝑡𝑛
𝑓
, i.e. 

𝑒𝑛
𝑑(𝑡𝑛

𝑙 ), should be larger than the requested amount 𝑒𝑛,𝑟𝑒𝑞
𝑑 . Note that energy requests for vehicles 

are collected by a driver-charger interface.  

To reduce the number of decision variables in the optimization problem, modeling approaches 

from (Zhang, Hu, Xu, & Song, 2017) were adapted to aggregate numerous individual EVs as one 

single virtual battery with power and energy boundaries, hereby improving the computational 

efficiency. According to this approach, any trajectory that falls between the power and energy 

boundaries can be achieved by controlling each EV’s charging power. The approach is 

summarized as follows: 

𝐸𝑑
+/−

(𝑡) =  ∑ 𝑒𝑛,𝑑
+/−

(𝑡) 
𝑛∈𝑁𝑝(𝑡)

, 𝑡 ∈ [0, 𝑇]  (4) 

𝐸𝑑
−(𝑡) ≤∑𝑃𝑑(𝜏) ⋅ Δ𝑡

𝑡

𝜏=0

≤ 𝐸𝑑
+(𝑡), ∀𝑡 ∈ [0, 𝑇] (5) 

𝑃
𝑑
=∑ 𝑝 ⋅ 𝜂𝑐

𝑛∈𝑁𝑝
𝑑(𝑡)

 (6) 

𝑏𝑎𝑔𝑔
𝑑 ⋅ 𝑝 ≤ 𝑃(𝑡) ≤ 𝑏𝑎𝑔𝑔

𝑑 ⋅  𝑃
𝑑
, ∀𝑡 ∈ [0, 𝑇] (7) 

The aggregate energy boundaries, i.e. 𝐸𝑑
+/−

(𝑡), are obtained by summing up 𝑒𝑛,𝑑
+ (𝑡), which is the 

accumulated energy from the as-fast-as-possible charging pattern, and  𝑒𝑛,𝑑
− (𝑡), which is from 

the as-late-as-possible charging pattern. In addition, the total power consumption value should 

be lower than the aggregated power from all available vehicles at time 𝑡. Discontinuity of the 

aggregated power is also modeled, similar to equation (1). The optimal power consumption 

profiles for day-ahead operations can be used as the reference for EVs to follow during the real-

time operations in distributed and asynchronous fashions, which are, however, not the focus of 

this chapter.  

Time-of-Use Tariff Structure 

For commercial sites in California TOU markets, two categories of costs are generally applied to 

customers’ bills:  energy charge and demand charge. Energy charges are calculated by 

multiplying the amount of electricity used per time period, measured in kilowatt-hours (kWh), 

by the per-kWh rate for that time period. The demand charge is calculated by multiplying the 

maximum load measurement in each demand period by the corresponding demand charge rate, 

in $/kW. Thus, the total monthly cost of energy charge is modeled by equation (8), where costs 

of energy consumption in different time periods are all included. Equation (9) models the total 

monthly demand charges, where 𝐼 denotes the set of the demand charge periods. In the case of 
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the E-19 tariff in PG&E territory, there are three demand charge periods for summer months 

(peak, part-peak, and any-time max periods) and two for winter months (part-peak and any-time 

max periods).  

𝐶𝐸𝐶 =∑ ∑ (𝐿𝑑(𝑡) + ∑ 𝑃𝑑(𝑡)) ⋅ 𝛥𝑡 ⋅ 𝜆(𝑡)

𝑁𝑝
𝑑(𝑡)

𝑛=1
𝑡∈𝑇𝑑∈𝐷

 (8) 

𝐶𝐷𝐶 = ∑ max
𝑡∈𝑇𝑖
𝑑∈𝐷

(𝐿𝑑(𝑡) + ∑ 𝑃𝑑(𝑡)

𝑁𝑝
𝑑(𝑡)

𝑛

) ⋅ 𝜔𝑖
𝑇𝑖∈{𝑇𝑝,𝑇𝑝𝑝,𝑇𝑀}

 (9) 

 

Thus, to minimize the monthly energy bills by considering only the energy charge and demand 

charges, a deterministic optimization problem is formulated as: 

Problem 1 – TOU charges (energy charge + demand charge) 

Objective:   𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝐶𝐸𝐶 + 𝐶𝐷𝐶) 

Subject to:  (1)-(9) 

Integration with Peak Day Pricing Plan 

Peak Day Pricing (Figure 44) is an optional rate that offers businesses a discount on regular 

summer electricity rates in exchange for higher prices during 9 to 15 peak pricing event days 

per year which typically occur on the hottest days of the summer (PG&E defines summer as May 

1 to October 31). When utilities observe or anticipate high wholesale market prices, high 

demand, or a power system emergency, they call critical events during a specified time (for 

example, 2 p.m. to 6 p.m. on summer weekdays). The price for electricity during these times is 

substantially higher. 

Figure 44:  Peak Day Pricing:  Event Day Rates 

 

Note:  Based on A1 rates per kWh as of July 1, 2017. 

Source:  Lawrence Berkeley National Laboratory 
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The customer must submit a capacity reservation value, that is, 𝑃𝑃𝐷𝑃
𝐶𝑅 , to the load-serving entity, 

in this case the utility. The demand peaks in different demand periods that exceed the capacity 

reservation value will be protected from the demand charges by the PDP policy, that is, credits 

will be billed to customers for the exceeding amount. This policy is modeled by equation (10) 

and (11). However, the total energy consumption in kWh below 𝑃𝑃𝐷𝑃
𝐶𝑅  during PDP events will be 

billed with PDP energy charge rate  𝜆𝑃𝐷𝑃, which is modeled by equation (12). The optimal EV 

charging problem with the PDP market participation is summarized in the problem 2. 

𝑅𝑃𝐷𝑃
𝑝

= 𝜋𝑃𝐷𝑃
𝑝

⋅ ( max
𝑑∈𝐷𝑃𝐷𝑃

𝑡∈𝑇𝑃𝐷𝑃∩𝑇𝑃

(𝐿𝑑(𝑡) +∑ 𝑝𝑛
𝑑(𝑡)

𝑛∈𝑁𝑝
𝑑(𝑡)

) (10) 

𝑅𝑃𝐷𝑃
𝑚 = 𝜋𝑃𝐷𝑃

𝑚 ⋅ ( max
𝑑∈𝐷𝑃𝐷𝑃

𝑡∈𝑇𝑃𝐷𝑃∩𝑇𝑀

(𝐿𝑑(𝑡) +∑ 𝑝𝑛
𝑑(𝑡)

𝑛∈𝑁𝑝
𝑑(𝑡)

) (11) 

𝐶𝑃𝐷𝑃 = 𝜆𝑃𝐷𝑃 ⋅∑ ∑ max
𝑑∈𝐷𝑃𝐷𝑃
𝑡∈𝑇𝑃𝐷𝑃

(𝐿𝑑(𝑡) +∑ 𝑝
𝑛
𝑑(𝑡)

𝑁𝑝
𝑑(𝑡)

− 𝑃𝑃𝐷𝑃
𝐶𝑅 , 0) ⋅ Δ𝑡

𝑡∈𝑇𝑃𝐷𝑃𝑑∈𝐷𝑃𝐷𝑃

 (12) 

 

Problem 2 – TOU charges with PDP integration 

Objective:   𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝐶𝐸𝐶 + 𝐶𝐷𝐶 − 𝑅𝑃𝐷𝑃
𝑝

− 𝑅𝑃𝐷𝑃
𝑚 + 𝐶𝑃𝐷𝑃) 

Subject to:  (1) - (12) 

Integration with Ancillary Service Market 

To achieve instantaneous balance between the supply and demand sides of the electricity 

transmission system, ancillary services can be used by calling services from various grid 

components, not only traditional electricity generators but also demand-side distributed energy 

resources. A regulation up/down market is representative of ancillary service markets. EVs with 

the capability to follow the up and down regulation signals in a short period of time can be 

coordinated to serve as effective and reliable resources to provide regulation services. Based on 

the formulation of Problem 1, the EV integration with regulation market participation was 

modeled as:   

𝑅𝐴𝑆 =∑ ∑ (𝑅𝑢𝑝
𝑑 (𝑡) ⋅ 𝜋𝑢𝑝

𝑑 (𝑡) + 𝑅𝑑𝑜𝑤𝑛
𝑑 (𝑡) ⋅ 𝜋𝑑𝑜𝑤𝑛

𝑑 (𝑡)) ⋅ Δ𝑡
𝑡∈𝑇𝑑∈𝐷

 (13) 

𝑃𝑑(𝑡) = 𝐵𝑑(𝑡) + 𝜌𝑢𝑝 ⋅ 𝑅𝑢𝑝
𝑑 (𝑡) + 𝜌𝑑𝑜𝑤𝑛 ⋅ 𝑅𝑑𝑜𝑤𝑛

𝑑 (𝑡) (14) 

𝑏𝑎𝑔𝑔
𝑑,𝐵 (𝑡) ⋅ 𝑝 ≤ 𝐵𝑑(𝑡) ≤ 𝑏𝑎𝑔𝑔

𝑑,𝐵 (𝑡) ⋅ 𝑃
d
 (15) 

𝑏𝑎𝑔𝑔
𝑑,𝑃 (𝑡) ⋅ 𝑝 ≤ 𝑃𝑑(𝑡) ≤ 𝑏𝑎𝑔𝑔

𝑑,𝑃 (𝑡) ⋅ 𝑃
d
 (16) 

𝐸𝑑
−(𝑡) ≤ ∑ 𝑃𝑑(𝜏) ⋅ Δ𝑡 ≤

𝑡

𝑡0

𝐸𝑑
+(𝑡) (17) 

𝐸𝑑
−(𝑡) ≤∑ 𝐵𝑑(𝜏) ⋅ Δ𝑡 ≤

𝑡

𝑡0

𝐸𝑑
+(𝑡) (18) 

𝑏𝑎𝑔𝑔
𝑑,𝐵 (𝑡) ⋅ 𝑅𝑑𝑜𝑤𝑛 ≤ 𝑅𝑑𝑜𝑤𝑛

𝑑 (𝑡) ≤ 𝑏𝑎𝑔𝑔
𝑑,𝐵 (𝑡) ⋅ 𝑃

d
 (19) 
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𝑏𝑎𝑔𝑔
𝑑,𝑟𝑢(𝑡) ⋅ 𝑅𝑢𝑝 ≤ 𝑅𝑢𝑝

𝑑 (𝑡) ≤ 𝑏𝑎𝑔𝑔
𝑑,𝑟𝑢(𝑡) ⋅ 𝑃

d
 (20) 

𝑏𝑎𝑔𝑔
𝑑,𝑏𝑑(𝑡) ⋅ 𝑝 ≤ 𝐵𝑑(𝑡) + 𝑅𝑑(𝑡) ≤ 𝑏𝑎𝑔𝑔

𝑑,𝑏𝑑(𝑡) ⋅ 𝑃
d
 (21) 

𝑏𝑎𝑔𝑔
𝑑,𝑏𝑢(𝑡) ⋅ 𝑝 ≤ 𝐵𝑑(𝑡) − 𝑅𝑢(𝑡) ≤ 𝑏𝑎𝑔𝑔

𝑑,𝑏𝑢(𝑡) ⋅ 𝑃
d
 (22) 

 

Equation (13) shows the expression for calculating the total revenue from day-ahead frequency 

regulation markets. The revenue consists of the regulation-up capacity payment and regulation-

down capacity payment. Unlike the modeling approaches in previous research where day-ahead 

commitments can be violated with penalties, LBNL’s simulation did not violate the commitment 

in any circumstances due to the performance regulations in California ancillary service markets.  

Because of the non-continuity property of power boundaries, auxiliary binary decision variables 

are defined to indicate the options to participate in the regulation up and down markets. Given 

regulation signals from CAISO, an aggregate EV fleet, for example, will follow the signals, that 

is, increase or decrease the aggregated power consumption of the EVs. The revenue is 

calculated based on the day-ahead bids (the committed regulation up and down capacities) 

rather than the actual increased or decreased power consumption following real-world 

regulation signals, indicated by equation (14). The negative (up), 𝜌𝑢𝑝, and positive (down), 𝜌𝑑𝑜𝑤𝑛,  

utilization factors represent the fraction of the committed regulation dispatched by the CAISO 

control signal. Actual utilization factors collected during a real-world demonstration project at 

Los Angeles Air Force Base were used in the simulations presented here. The baseline aggregate 

power 𝐵𝑑(𝑡) is the original power consumption profile assuming no regulation signals, while 

𝑃𝑑(𝑡) is the actual power profile in equation (15) – (18). Here, 𝐵𝑑(𝑡) is a decision variable. 

Equation (19), (20) model the constraints that the aggregate fleets can participate in the 

regulation up or down markets, or choose to stay out of the markets. We also assume that the 

aggregated EV fleet can follow all regulation signals, i.e. the actual power consumption should 

always stay in the power boundaries, which is modeled by equations (21) and (22). 

Note that the aggregator can make regulation up and down bids for the same time periods, 

even if one of them will not be called during implementation, but still getting benefits for the 

bids. Additionally, the actual aggregate power and the aggregated baseline profiles should both 

satisfy the aggregate energy and power constraints, modeled in equation (4) - (7). The problem 

is formulated as: 

Problem 3 – TOU charges with regulation markets 

Objective:   𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶𝐸𝐶 + 𝐶𝐷𝐶 − 𝑅𝐴𝑆 

Subject to:  (1) - (9), (13) – (22) 

Modeling of Proxy Demand Resource Market 

Aggregated EVs can also participate in the PDR market, in which the fleet EVs are treated as a 

virtual battery with flexibility to “sell” the power in the PDR market. For EVs with vehicle-to-grid 

(V2G) capabilities, “sell” operations can be achieved by discharging the vehicle batteries, while 
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for V1G,2 “selling” of power would be achieved by reducing the aggregate power consumption 

relative to a power consumption baseline. The model is presented as follows: 

𝑅𝑃𝐷𝑅 =∑ ∑ 𝑅𝑠𝑒𝑙𝑙
𝑑 (𝑡) ⋅ 𝜋𝑝𝑑𝑟

𝑑 (𝑡) ⋅ Δ𝑡
𝑡∈𝑇𝑑∈𝐷

 (23) 

𝑀𝑠 ⋅ (1 − 𝑏𝑎𝑔𝑔
𝑃𝐷𝑅(𝑡)) ≤ 𝑃𝑑(𝑡) − 𝐵𝑑(𝑡) + 𝑅𝑠𝑒𝑙𝑙

𝑑 (𝑡) ≤ 𝑀𝑏 ⋅ (1 − 𝑏𝑎𝑔𝑔
𝑃𝐷𝑅(𝑡))  (24) 

𝑏𝑎𝑔𝑔
𝑠𝑒𝑙𝑙 (𝑡) ⋅ 𝑅𝑠𝑒𝑙𝑙

𝑃𝐷𝑅 ≤ 𝑃𝑛
𝑑(𝑡) ≤ 𝑏𝑎𝑔𝑔

𝑠𝑒𝑙𝑙 (𝑡) ⋅ 𝑃
𝑑
 (25) 

 

The revenue from the PDR market is a product of the virtual sell power, i.e. 𝑅𝑠𝑒𝑙𝑙
𝑑 (𝑡), multiplied 

by the corresponding PDR market prices, i.e. 𝜋𝑝𝑑𝑟
𝑑 (𝑡) in equation (23). The baseline power 

consumption 𝐵𝑛
𝑑(𝑡), is typically the averaged value of a number of previous days, thus here we 

model it as a known profile before optimization. In reality, PDR market participation has a 

requirement of a minimal threshold for virtual sell power, i.e. 𝑅𝑠𝑒𝑙𝑙
𝑃𝐷𝑅 in equation (25). In equation 

(24), 𝑏𝑎𝑔𝑔
𝑃𝐷𝑅(𝑡) is the binary indicator of whether the fleets are participating in the PDR market. 

When 𝑏𝑎𝑔𝑔
𝑃𝐷𝑅(𝑡) = 1, i.e. participating, equation (24) is reduced to: 

𝑃𝑑(𝑡) = 𝐵𝑑(𝑡) − 𝑅𝑠𝑒𝑙𝑙
𝑑 (𝑡) (26) 

where the actual power consumption value 𝑃𝑛
𝑑(𝑡) equals the baseline power 𝐵𝑑(𝑡) minus the 

virtual sell power 𝑅𝑠𝑒𝑙𝑙
𝑑 (𝑡). When 𝑏𝑎𝑔𝑔

𝑃𝐷𝑅(𝑡) = 0, indicating no participation, equation (17) evolves to:   

𝑀𝑠 ≤ 𝑃
𝑑(𝑡) − 𝐵𝑑(𝑡) + 𝑅𝑠𝑒𝑙𝑙

𝑑 (𝑡) ≤ 𝑀𝑏 (27) 

 

where 𝑀𝑠 is a sufficiently small number and 𝑀𝑏 is a sufficiently big number. Equation (27) 

remains true for all cases, making it a redundant constraint in the optimization problem, which 

can be effectively handled by current solvers with mixed-integer capabilities. In addition, to 

model the consecutive engagement constraint, some numerical approaches are applied as 

shown in equation (28) and (29), 

𝑏𝑐(𝑡0) = 𝑏𝑎𝑔𝑔
𝑃𝐷𝑅(𝑡0) (28) 

𝑏𝑐(𝑡) ≤ 1 − 𝑏𝑎𝑔𝑔
𝑃𝐷𝑅(𝑡 − Δ𝑡) (29) 

𝑏𝑐(𝑡) ≤ 𝑏𝑎𝑔𝑔
𝑃𝐷𝑅(𝑡) (30) 

𝑏𝑐(𝑡) ≥ 𝑏𝑎𝑔𝑔
𝑃𝐷𝑅(𝑡) − 𝑏𝑎𝑔𝑔

𝑃𝐷𝑅(𝑡 − Δ𝑡),  ∀𝑡 ∈ 𝑇 (31) 

∑ 𝑏𝑎𝑔𝑔
𝑃𝐷𝑅(𝑡) − 𝑁𝑐

min(𝑡+𝑁𝑐−1,𝑇)

𝜏=𝑡

≥ −𝑁𝑏 ⋅ (1 − 𝑠𝑐(𝑡)), ∀𝑡 ∈ 𝑇 (32) 

An auxiliary binary decision variable, i.e. 𝑏𝑐(𝑡), is utilized to model the consecutive participation 

constraint. 𝑏𝑐(𝑡) = 1 indicates the beginning of a new block of consecutive participation at 𝑡. 

Equations (28) – (32) guarantee the number of consecutive participating time steps is greater or 

                                                 
2 V1G is unidirectional power flow into a battery with no discharge of the battery to the grid, in contrast to V2G which 

is bidirectional power flow in and out of the battery. 
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equal to 𝑁𝑐. Incorporating binary decision variables into the optimization problems results in a 

mixed-integer programming problem, where sophisticated numerical solvers are needed. With 

PDR market integration, the overall problem is formulated as follows: 

Problem 4 - TOU charges with PDR market participation 

Objective:   𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶𝐸𝐶 + 𝐶𝐷𝐶 − 𝑅𝑃𝐷𝑅 

Subject to:  (1) - (9), (23) - (32) 

Modeling of Demand Bidding Program  

To increase system reliability, some utility companies are paying additional incentives to 

industrial, commercial, or agricultural customers to reduce their energy consumption during 

certain times. An example is PG&E’s DBP. DBP events are dispatched in day-ahead operations, so 

pre-planning is necessary for optimizing the benefits. The modeling approaches for DBP 

markets are very similar to those for PDR market, except that a fixed credit ($/kW) is used to 

calculate the revenues. Aggregated EVs can be utilized as valuable resources in response to DBP 

events following the above virtual battery modeling approaches.  

𝑅𝐷𝐵𝑃 = 𝜋𝐷𝐵𝑃 ⋅∑ ∑ 𝑅𝑟𝑑𝑐
𝑑 (𝑡) ⋅ Δ𝑡

𝑡∈𝑇𝑑∈𝐷
 (33) 

𝑏𝐷𝐵𝑃
𝑑 (𝑡) ⋅ 𝑅𝐷𝐵𝑃 ≤ 𝑃

𝑑(𝑡) ≤ 𝑏𝐷𝐵𝑃
𝑑 (𝑡) ⋅ 𝑃 (34) 

 

Note that there are also consecutive participation requirements and a minimal power reduction 

requirement, thus the constraints for the PDR market, i.e. equation (23) – (32) are also valid for 

DBP. The problem is defined as follows: 

 

Problem 5 - TOU charges with DBP market participation 

Objective:   𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶𝐸𝐶 + 𝐶𝐷𝐶 − 𝑅𝐷𝐵𝑃 

Subject to:  (1) - (9), (23) - (34) 

Results and discussion 

Actual Electric Vehicle Charging Profiles, Electric Utility Rate, and Ancillary 

Services Regulation Prices 

The real-world datasets of public and fleet EV charging at the AlCoPark Garage from 2013-2017, 

including the whole building demand from the PG&E electric meter, were collected and used for 

the simulations presented and discussed below. The dataset properties are displayed in Table 

10. 

Table 10:  Dataset of Charging Session in the Study 

Number of Sessions Number of EVSEs First Session Date Last Session Date 

20,363 25 3/15/2013 9/7/2017 

Source:  Lawrence Berkeley National Laboratory 
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The demonstration site is under the PG&E E-19 tariff with energy and demand rates shown in 

Table 11. Ancillary service regulation up and down day ahead prices were collected from 

CAISO’s Open Access Same-time Information System for 1/1/15 to 12/31/16 (CAISO, n.d.). 

Table 11:  Pacific Gas and Electric Company E-19 Demand Charge and Energy Charge Rates 

Demand Charges $/kW Time Period 

Maximum Peak Demand Summer $18.74 12:00 p.m.-6:00 p.m. 

Maximum Part-Peak Demand 

Summer 
$5.23 8:30 a.m.-12:00 p.m. and 6:00 p.m.-9:30 p.m. 

Maximum Demand Summer $17.33 Any time 

Maximum Part-Peak Demand Winter $0.13 8:30 a.m.-9:30 p.m. 

Maximum Demand Winter $17.33 Any time 

Energy Charges $/kW Time Period 

Peak Summer $0.14726 12:00 p.m.-6:00 p.m. 

Part-Peak Summer $0.10714 8:30 a.m.-12:00 p.m. and 6:00 p.m.-9:30 p.m. 

Off-Peak Summer $0.08057 Any time 

Part-Peak Winter $0.10166 8:30 a.m.-9:30 p.m. 

Off-Peak Winter $0.08717 Any time 

Source:  Pacific Gas and Electric Company, 2016 

Simulation Results 

Results of optimizations of EVs in the demand response programs and ancillary service 

markets described above are presented here. The first example optimizes charging schedules 

solely to minimize electric TOU costs. The second example optimizes to minimize TOU costs 

and maximize ancillary service regulation revenue.  

First, the load shifting and cost reduction effects of smart charging programs under only TOU 

prices are presented. As shown in Table 11 above, the energy charge and demand charge rates 

in winter are lower than those in summer. As a result, AlCoPark Garage’s actual total monthly 

costs for energy charges in winter were slightly lower than those in summer, indicated by the 

blue bars in Figure 45, and the total monthly demand charges are considerably lower than those 

of summer, indicated by the orange bars in Figure 45. 

Since the demand charge is calculated by the monthly peak demand multiplied by the 

corresponding demand charge rate, the smart charging program has a tendency to reduce the 

monthly peaks in multiple demand windows. For instance, the load profile of the day with the 

maximum monthly demand in June 2016 is shown in Figure 46. The EV load profile optimized 

only to minimize energy charges is shown in upper figure (a). The EV load profile optimized to 

minimize both energy and demand charges is shown in lower figure (b), and highlights the 

flatter demand during the peak 12 p.m. to 6 p.m. period.  
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Figure 45:  Actual Total Monthly Cost of Energy and Demand Charges for AlCoPark Garage from 
January 2015 to December 2016 

 

Source:  Lawrence Berkeley National Laboratory 

 Figure 46:  Example Smart Charge Electric Vehicle Load Shifting to Minimize Electric Costs on 
June 6, 2016 

Shifted Load

Shaved Peak

 

Source:  Lawrence Berkeley National Laboratory 

To investigate the impact of ancillary service market integration, an additional option in the 

simulated smart charging program was added to allow the EV fleet to modify the aggregate 

power consumption profile in response to the regulation up and down prices from the CAISO 

ancillary services market (problem 4 defined in the previous section). As shown in Figure 47, 

the EV load profile becomes spikier supporting the ancillary service market participation 

because the optimization tends to increase or decrease the power consumption when a high 

regulation up/down price is anticipated. However, with the possibility that increased EV 



61 

charging load may cause to create new demand peaks, herein increasing the demand charges, 

the optimization has to evaluate the trade-off globally on a monthly basis. Illustrated by Figure 

47, the adjusted power consumption profiles due to regulation market participation are 

constrained so as not to exceed the monthly demand peaks set by the TOU-based optimization. 

Figure 47:  Example Load Profile for Two Days of Ancillary Service Regulation Up and Down 
Market Participation 

 

Source:  Lawrence Berkeley National Laboratory 

The details of the regulation market participation are shown in Figure 48, including the baseline 

power, actual EV load profile (upper), and the actual regulation up/down bids (lower).  

Figure 48:  Results of Regulation Market Participation 

 
 

Source:  Lawrence Berkeley National Laboratory 
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Note that in (a), the blue curve denotes the EV baseline load profile and the red curve is the 

actual EV power consumption curve. Using both curves in the optimization, energy 

consumption (kWh) was held constant, constrained by equations (17) and (18).  

Note that the duration of each regulation commitment was assumed to be 15 minutes in the 

optimization, within which the actual regulation signals are dispatched every 4 seconds. A 15-

minute interval was also considered as the finest resolution for EV control. In addition, both 

regulation up and regulation down bids were allowed in the same time periods. Due to the 

assumption about the regulation up/down utilization rates, the regulation up/down bids were 

called partially, and the adjusted EV power consumption was reflected on as the differences 

between the baseline (blue) and the actual load profile (red) in Figure 48 (upper). 

The monthly revenue results (Table 12) were collected by simulating EV management strategies 

for each month from January 2015 to December 2016. 

Table 12:  Monthly Revenue from the Regulation Market 

Year Month Revenue Year Month Revenue 

2015 1 $90.38 2016 1 $74.53 

2015 2 $66.42 2016 2 $66.33 

2015 3 $73.88 2016 3 $90.37 

2015 4 $95.73 2016 4 $71.75 

2015 5 $78.09 2016 5 $68.62 

2015 6 $67.75 2016 6 $95.70 

2015 7 $76.57 2016 7 $69.22 

2015 8 $68.51 2016 8 $77.28 

2015 9 $78.16 2016 9 $61.50 

2015 10 $80.48 2016 10 $78.24 

2015 11 $63.24 2016 11 $79.70 

2015 12 $98.11 2016 12 $115.14 

Source:  Lawrence Berkeley National Laboratory 

The highest monthly revenue was $115 in December 2016 and the lowest revenue was $78 in 

September 2016. The relationship between monthly regulation revenue and EV charging 

flexibility at the AlCoPark Garage is shown in Figure 49. To represent the monthly average 

distance between the upper and lower boundaries of the virtual battery, the flexibility index of 

the aggregated EVs is defined as: 

𝑓𝑎𝑔𝑔 =
∑ ∑ (𝐸+(𝑡) − 𝐸−(𝑡))𝑡∈𝑇𝑑∈𝐷

𝐷 ⋅ 𝑇
 (35) 

As indicated in Figure 49, the ability to generate profits in regulation markets was positively 

correlated with the flexibility index of the aggregated virtual battery, with a correlation 

coefficient of 0.667.  
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Figure 49:  Monthly Profits versus Flexibility Index 

 

Source:  Lawrence Berkeley National Laboratory 

Proxy Demand Resource Market Participation 

Problem 5 was addressed to simulate PDR market participation. CAISO requires participants to 

have at least a one-hour commitment into the PDR market. One-hour PDR market commitments 

were modeled with the constraints represented in equations (28) – (32). As shown in Figure 50 

(lower), the green curve indicates the actual EV power consumption profile, while the red curve 

represents the virtual sell power of the aggregated EVs given price signals from the PDR 

market. The total energy consumption value following the actual power consumption profile 

should be equal to the one that follows the baseline profile generated by problem 2. In addition, 

problem 5 models the opportunities of the EVs to participate in the PDR market as discrete 

options, that is, the EV aggregator does not have to stay in the market for the entire day and 

can plan to step out of market when the PDR prices are not optimal.  

The actual monthly revenues from PDR markets are illustrated by the red triangles in Figure 49, 

where the varying flexibilities of EV fleets to generate profits from PDR markets are shown. 

Note the consecutive commitment constraint is set to 1 hour for the PDR market optimizations. 

Demand Bidding Program Participation 

The modeling approaches for the PDR market integration were similar to those for the DBP 

market; however, there were different requirements for commitments in the DBP market. For 

instance, participation in the DBP market only occurs when the DBP events are issued by the 

program facilitator, PG&E, while hourly price signals in the PDR market were available daily. In 

PG&E’s DBP program, $0.5 per kW is credited to commercial customers when they reduce their 
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demand during DBP events. It was assumed in this analysis that the threshold to participate 

was greater than or equal to 10 kW and each commitment had to have a duration at least two 

consecutive hours. The simulation results for the DBP market participation is shown in Table 

13.  

Figure 50:  Results of Proxy Demand Resource Market Participation 

 

Source:  Lawrence Berkeley National Laboratory 

Table 13:  Monthly Revenues from the Demand Bidding Program Market 

Year Month Event # Revenue 

2016 6 5 $16 

2016 7 6 $10 

2016 8 2 $0 

2016 9 1 $0 

Source:  Lawrence Berkeley National Laboratory 

Due to the two-hour commitment constraint, the existing EV resources were not qualified to 

participate in all of the DBP events in 2016. Thus, the profit-generating capacity for EVs is not 

as high as for the regulation market, considering the limits of the fleet size and V1G power and 

flexibility. 

Peak-day Pricing Program Participation 

Participating the PDP program, the annual electric bill savings were expected to improve as the 

monthly peak demand and part-peak demand were partially protected by the capacity reserve 

level (CRL), which was required for PDP program enrollment. Specifically, as modeled by 

equations (10) – (12), the monthly peaks above the CRL received PDP credits, while the energy 
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usage not protected by CRL was billed with a fixed PDP rate. PDP events were only issued 

during summers, and only peak and part-peak demands were considered. The monthly PDP 

benefit was calculated as 𝑅𝑃𝐷𝑃
𝑝

+ 𝑅𝑃𝐷𝑃
𝑝𝑝

− 𝐶𝑃𝐷𝑃. As shown in Figure 51, PDP benefits for summer 

months in the year of 2016 were computed with varying CRLs. For months with only one PDP 

event (August and September), PDP credits dominated the total benefit, which decreased as the 

CRL increased. In contrast, the event energy charge became dominant in months with more PDP 

events since there was less unprotected energy usage as the CRL increased between 10 kW and 

60 kW. As CRL increased to greater than 60 kW, the month benefits decreased because of the 

weaker protection by CRL. In addition, the annual total PDP benefit varied with the CRL with the 

optimal CRL value close to 40 kW. 

Figure 51:  Impact of Capacity Reserve on Peak-day Pricing Benefits 

 

Source:  Lawrence Berkeley National Laboratory 

Discussion 
This section discusses the impacts of different factors on the revenue-generating capability of 

the EV fleet, including the freedom of baseline power profile selection, flexibility of individual 

EVs, and market participation threshold. Simulation results indicate that proper tuning of these 

factors can lead to significant improvements in revenue generation.  

Impact of Baseline Calculation 

As opposed to the regulation simulation described above where baseline charging power was a 

decision variable, here the charging profiles obtained by solving problem 2 were used as 

baselines. As shown in Figure 52, the actual power (red) generally follows the baseline power 

profile (blue), unlike what is seen in Figure 48. However, the capability of the smart charging 

program was limited in exploring more space to generate revenues from regulation markets. 

The monthly revenue from regulation in June, 2016 was reduced from $95 to $36. Thus, with a 
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preset baseline power profile, the flexibility was limited as well as the revenue-generating 

capability.  

Figure 52:  Fixed Baseline Case 

 

Source:  Lawrence Berkeley National Laboratory 

Impact of Flexibility on Regulation Revenue 

To evaluate the impact of individual vehicle charging flexibility on regulation market revenues, 

the total connected duration of each EV was increased by multiple ratios to simulate different 

degrees of EV connected time flexibilities. For the months shown in Figure 53 (January, June, 

and August of 2016), revenues increased rapidly as the ratio of connected time to charging time 

increased from 1 to 2.5. However, as the ratio increased beyond 2.5, the total monthly revenue 

gradually plateaued. Note that in the simulation, two days was the maximum connected 

duration for each EV. Thus, within the given time period, limitations exist for revenue 

improvement by extending EV connected duration flexibility. However, for real-world 

operations, it will be beneficial for an EV fleet manager to maximize each EV’s connected 

duration flexibility by having it either connect earlier or disconnect later. 

Impact of Minimum Participation Threshold 

In the market participation simulations presented above, the minimum threshold to participate 

was 10 kW, which was appropriate for the size of the EV fleet in this study. Simulations to 

investigate the impact of varying threshold values on revenue is presented here. As the 

threshold value increases in Figure 54, the initial revenue drop is small, however, revenue 

sharply decreases as the threshold increases from 20 kW to 60 kW, indicating most of the 

commitments failed to satisfy the constraints defined by equation (19) and (20) because the 

required power adjustments exceeded the capacity of the EV fleet.  
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Figure 53:  Impact of Flexibility 

 

Source:  Lawrence Berkeley National Laboratory 

Figure 54:  Impact of Minimum Participation Threshold 

 

Source:  Lawrence Berkeley National Laboratory 

Smart Charging and Market Participation Summary 
Flexibility in scheduling the charging of individual fleet EVs leads to greater revenue in all 

demand response and electric grid market participation. For example, monthly regulation 

revenue was approximately doubled when the fleet EV charging baseline was controlled rather 

than uncontrolled. One of the most critical aspects of smart charging control is the ratio of the 

time an EV is connected to a charging station port and the time the EV is actively charging. The 

simulations performed in this study show that the ratio does not have to exceed roughly 2-3 to 

maximize revenue from regulation ancillary services market participation. This is a good 
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finding for EV fleet owners or aggregators since it means that, with regards to maximizing 

regulation revenue, participating EVs do not have to be left connected to charging stations for 

very long periods after charging is complete, which will allow a greater utilization of charging 

equipment. Wholesale demand response and ancillary services markets have minimum levels of 

participation. This study shows that, for the EV fleet simulated, any threshold below 40 kW 

corresponds to maximum market participation revenues. Either threshold requirements have to 

be kept low or larger aggregations of fleet EVs will be needed for profitable market 

participation with higher thresholds. 
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CHAPTER 6: 
Conclusions, Future Work, and Challenges 

Conclusions and Future Work 
This project successfully demonstrated a set of smart charging strategies at an Alameda 

County public parking garage, that also houses the county’s primary fleet vehicle facility, to 

manage charging station loads and reduce utility costs. Alameda County was so pleased with 

the outcomes of the project that they paid a two-year contract to continue operation of the fleet 

management smart charging system at the AlcoPark Garage. Another significant success of this 

project comes in the form of technology transfer where a major charging service provider, 

ChargePoint, purchased project partner Kisensum in order to incorporate the technology 

developed in this project into their commercial product offerings because of the value that it 

brings to their fleet and commercial customers. 

A key feature of every smart charging control strategy presented here is that each EV whose 

charging time was adjusted received the same full charge and charging power it would have 

received had the smart charging control not been implemented. 

For public EVs, the managed charging strategies reduced daily peak energy demand by 7.0 kW. 

During the original peak period from 8 a.m. to 11 a.m., the peak demand was reduced from 

24.2 kW to 10.0 kW. The total charging power of all the public charging stations decreased by 

12.0 kW, which is about 26.7 percent of the original uncontrolled peak demand. For fleet EVs, 

the peak demand during the on- and mid-peak periods was reduced by 10.7 kW and 13.3 kW 

separately in one week during the summer period. For DCFC charging, the maximum power 

reduction was 20 kW, nearly half of the DCFC charging power in the normal mode. The median 

value of the power reductions was 4.3 kW, which is equal to the kW shed from one active 

charging session.  

During the testing of charging control for public EVs, there was an issue of charging power 

interruption during the charging session when the charging power setting was less than 1.5 kW. 

Frequent power interruptions may lead to charging sessions ending earlier than expected, 

which can cause “range anxiety” for drivers due to the unexpected loss of charging. Regarding 

the charging control of the DC fast charger, the researchers observed that the performance of 

this control strategy for managing the power spike from DC fast charging in a short period 

varies along with the number of the active charging sessions on the selected stations. Each 

active charging session can easily contribute about 4.5 kW of power reduction to offset the 

power spike. 

The researchers quantified the potential of the aggregated fleet EVs in participating multiple 

demand response products in the California retail and wholesale electricity markets. 

Comprehensive evaluation models were developed for the integration of EVs into various 

demand response products, analyzing the revenues and investigating the impact of multiple 
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factors on the revenue-generating capabilities. For future work, researchers will explore the 

online strategies within these real-world market contexts as potential implementable solutions. 

Challenges 

Public Charging Challenges 

For the public charging control, only 4.6 percent of the public charging sessions were controlled 

during the pilot study period. Educational materials such as flyers and workshops are needed 

to make public drivers aware of the effects of smart charging control on utility cost and on the 

environment. It is also important to guarantee that customers’ requests for charging energy are 

met by the end of the charging session without any compromise. Lastly, there are tradeoffs 

between lower charging rates and longer parked duration versus higher charging rates and 

shorter parked duration.  

Difficulties were encountered in recruiting and maintaining volunteers for study participation. 

Future studies of a similar nature would benefit from more knowledge and information on 

incentivizing human behavior with respect to public participation recruitment and retention. 

Fleet Management and Vehicle State of Charge Challenges 

Having a greater number of fleet EVs than charging stations limits the cost saving potential 

from the smart charging control. In addition, fleet staff cannot rotate vehicles to available 

charging stations outside of garage operating hours (7 a.m.-7 p.m.). Simple scheduling works 

well for fleet charging, but may vary depending on fleet vehicle activity patterns. 

Given the current limitations, a better coordinated fleet charging system would also improve 

performance and reduce utility costs by linking fleet vehicle trip management with the smart 

charging control. Moreover, the fleet EV dashboard could be fully used to improve the fleet EV 

charging control. 

Fast Charging Challenges 

Researchers observed that the performance of the control strategy for managing the power 

spike from DCFC charging in a short period varies with the number of the active charging 

sessions on the selected stations. Some success is achieved in decreasing demand during DCFC 

sessions by synching control of a large number of Level 2 fleet stations. However, given the 

increasing number of DCFC sessions, there is still a high likelihood of not having a large 

number of Level 2 fleet stations when a DCFC session is on. To address this issue, fixed battery 

storage can be integrated with the DCFC charging station by optimizing the charging and 

discharging of the battery and DCFC session along with other charging sessions. 
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LIST OF ACRONYMS 
 

Term Definition 

API Application program interface 

CAISO California Independent System Operator 

CRL Capacity reserve level 

DBP Demand Bidding Program 

DCFC Direct current fast charging 

DR Demand response 

EPIC Electric Program Investment Charge 

EV Electric vehicle 

EVSE Electric vehicle supply equipment 

JSON JavaScript Object Notation 

kW Kilowatt 

kWh Kilowatt-hour 

LBNL Lawrence Berkeley National Laboratory 

PDP Peak-day pricing 

PDR Proxy demand resource 

PHEV Plug-in hybrid electric vehicle 

PG&E Pacific Gas and Electric Company 

SMS Short Message Service 

SOC State of charge 

TOU Time-of-Use 

USDOE United States Department of Energy 

VGI Vehicle-grid integration 

V2G Vehicle-to-grid 
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